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Abstract
The properties of short time-to-market, hetero-

geneity, constrained resources, and unfriendly inter-
faces for IoT endpoint devices render system-based 
security mechanisms in traditional desktops, such 
as antivirus, inapplicable. Moreover, popular net-
work-based security solutions, such as IDS, might 
not completely detect and mitigate the rising fileless 
IoT attacks. This article leverages recent innovation, 
firmware emulation, to enable a digital twin (DT) of 
a targeted actual IoT endpoint device and to realize 
an intelligent IoT endpoint detection and response 
(EDR) platform. Inbound traffic to the actual IoT end-
point device is mirrored to the DT in the platform, 
and the system-level monitoring module integrated 
into the softwarized DT provides deep IoT endpoint 
detection in ways that are not possible on physical 
IoT endpoint devices. Machine learning algorithms 
are proposed to identify malicious behavior from 
system calls and network packets collected from sys-
tem-level and network-level monitors, and suspicious 
packets containing harmful commands are further 
determined. The EDR consequently updates the IDS 
rules so that traffic to the actual IoT endpoint device 
with the same malicious patterns is recognized and 
blocked, thereby achieving endpoint response. In the 
experiment, we enable emulation of IoT endpoint 
devices with ARM, MIPS, and X86 architectures and 
realize Mirai malware and remote code execution 
(RCE) attacks to validate the proposed EDR platform. 
With a 99.94% accuracy rate in attack determination, 
we believe that the proposed solution is feasible for 
the protection of IoT endpoint devices behind the 
edge. Such outcomes identify secure functionalities 
that DT using firmware emulation could offer in the 
IoT paradigm, thereby opening the door to innova-
tive mechanisms to combat IoT attacks.

Introduction
With sensing, computing, and communication 
capabilities, the Internet of Things (IoT) bridges the 
physical world and cyberspace, providing various 
kinds of applications to humans. The IoT frame-
work comprises endpoint sensors and actuators 
(known as IoT endpoint devices), infrastructure 
edge nodes for data relaying (known as edge 
nodes), and IoT application servers. The fact that 
any modification to IoT devices in the cyber world 

will affect users’ safety and privacy makes IoT a 
valuable target for adversaries. Moreover, IoT appli-
cations are typically designed for specific purposes, 
and instead of security requirements, aspects such 
as cost, performance, or power are the main con-
siderations during the design process. For example, 
the short time-to-market increases the possibility of 
hard-coded passwords, thereby making IoT end-
points vulnerable to malware infection and fileless 
attacks [1]. Consequently, the security issue in IoT 
has been an ever-increasing concern. 

Without sufficient computing power and a 
convenient access interface, traditional well-de-
veloped host-based protection mechanisms (e.g., 
antivirus) cannot be directly shifted into the IoT 
paradigm. Network-based solutions located at 
edge nodes such as a firewall or intrusion detec-
tion system (IDS) are feasible, where flow and 
packets to/from IoT endpoint devices are mon-
itored and malicious ones are identified and 
blocked [2]. Various kinds of features, such as 
traffic volume, IP address, and port number, flow 
semantics, or payload and data, are extracted 
for the estimation of malicious traffic or malfunc-
tioning IoT devices [3]. The powerful machine 
learning (ML) algorithms are applied as inference 
techniques from measured features to detect 
unknown malicious traffic automatically [2].

Although ML-based network detectors remark-
ably improved the defense performance of IoT 
endpoint devices, the fundamental issue that only 
network traffic can be utilized for analysis still restricts 
the degree of protection. E-Spion [4] first leverages 
system-level information such as CPU utilization or 
system call during the execution of the target pro-
cess to determine the abnormal behavior. However, 
E-Spion suggests that the physical hardware of an 
IoT device should be connected to the IDS, which 
introduces a hardware dependence issue and is 
not scalable. By virtually rehosting firmware into an 
emulated IoT system, the operations of firmware are 
virtualized and decoupled from the original IoT end-
point hardware. The barriers of constrained resourc-
es and inaccessibility in IoT endpoint devices are 
tackled accordingly [5]. The emulated IoT endpoint 
being enabled with powerful computation capability 
could operate exactly the same as the original IoT 
endpoint hardware. Acting as a virtual replica, the 
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emulated IoT endpoint could reflect the current sta-
tus in high fidelity and is considered as a Digital Twin 
(DT) of the original IoT endpoint hardware [6].

By integrating system-level monitors in vir-
tualized DT, the system behavior during opera-
tion such as system call or instruction executed 
can be well captured [7], which complements 
network-based solutions. Rather than directly 
enabling dynamic analysis and assessment in the 
emulated IoT system (e.g., fuzzing and concol-
ic execution), this article achieves system-level 
detection in emulated IoT devices so that the 
original IoT endpoint is protected. In particular, 
the system-level monitors in the emulated IoT sys-
tem apply an ML algorithm to identify the mali-
cious action and determine the corresponding 
network traffic or packets. Then the edge could 
easily block suspicious traffic incurring the mali-
cious activity so that IoT endpoint devices behind 
the edge are protected. We believe such IoT end-
point detection and response (EDR) is the first fea-
sible solution without the support of IoT hardware 
and thus is much more scalable and efficient. We 
believe that introducing an emulated IoT system 
that acts as DT paves the way to designing prac-
tical defenses and future research that uses this 
as a foundation are expected to be developed as 
new security solutions for IoT endpoint devices.

The contributions of our study are as follows,
•	 Digital Twin Framework. Designed and imple-

mented a digital twin framework that uses firm-
ware emulation to create virtualized replicas of 
IoT devices for security analysis.

•	 Enhanced System-Level Monitoring. Advanced 
system-level monitoring capabilities with 
Strace, Mshell, and SystemTap leverage digital 
twins to detect and respond to potential securi-
ty threats in IoT devices.

•	 Firmware Vulnerabilities Identification. Iden-
tified three previously known vulnerabilities in 
IoT firmware through testing and analysis using 
the digital twin framework.
The remainder of this article is organized as 

follows. We survey the existing research in net-
work-based edge detectors and DT. The core 
technology applied to enable CDT, firmware 
rehosting, is extensively described. The novel intel-
ligent IoT EDR based on the emulated IoT system 
is proposed and the experimental results are dis-
cussed. Finally, we conclude this work.

Background and Related Work

IoT Attacks
Recently, IoT botnets and malware received lots of 
attention due to the Mirai’s source-code release and 
damage on global websites from its variants. More-
over, hackers exploit existing or unknown vulnerabil-
ities on the victim devices to achieve fileless attacks 
without transporting a malicious binary [1]. The cur-
rent IoT attacks consist of following stages [8]:
Stage 0: Scanning. By investigating reactions of 

crafted requests, the adversary could locate 
and identify vulnerable victims for the follow-
ing attacks.

Stage 1: Exploitation. It is typically achieved by 
brute force password guessing or exploiting 
RCE vulnerabilities to gain access to the victim.

Stage 2: Downloading. The malicious binary is 
delivered from a loader to the victim.

Stage 3a: Execution. The victim is compromised 
via the execution of payload.

Stage 3b: Compromise. The adversary com-
pletely takes over the full control of the victim 
and could manipulate the victim persistently.

Stage 4: Communication. The victim commu-
nicates with the Command and Control (C2) 
server or the adversary and receives instruc-
tions from them.

Stage 5: Attack Action. The compromised vic-
tims acting as bots or relays launch stealth 
attacks such as distributed denial-of-service 
(DDoS) or lateral movement.
Before launching a malware attack, an adver-

sary first collects publicly available IoT devices 
using a search engine such as shodan, which is 
often referred to as reconnaissance (see Step 0). 
The infection is typically achieved by brute force 
password guessing (see Step 1). In the download-
ing stage, the adversary typically leverages wget, 
curl, or echo commands to download malware 
to the victim (see Step 2), and then execute mal-
ware to infect the IoT device to form a botnet 
(see Step 3a). Unlike a fileless attack, an adversary 
will use the infected victims to connect to a C2 
server (see Step 4), so that the hacker can control 
a large number of infected zombies via C2 server 
to launch DDoS attacks against specific services 
in a short period of time (see Step 5).

Regarding fileless attacks, the adversary delib-
erately hides their actions using known RCE vul-
nerabilities and leaves no files behind (see Step 1), 
thereby increasing the difficulty for later forensics 
[1]. Subsequently, the adversary can implant back-
doors into the chosen victim devices to execute 
advanced persistent threats (see Step 3b). Such 
attacks are highly suitable for conducting subse-
quent attacks such as privilege escalation, data theft, 
information exposure, or network compromise.

IoT Network-Based Detector
With powerful computing capability, detectors 
located could monitor the communication traffic 
from/to the targeted IoT endpoints in real-time 
[2]. Such network-based IDS extracts features 
from the packet header, payload, or network flow 
and further recognizes specific activities from 
the measured features [3]. Traditionally, activi-
ties are compared with malicious ones in a signa-
ture database predefined by security experts. If 
there is a match, then the activity is determined 
as suspicious. For example, Heimdall [9] leverages 
whitelist and blacklist queries from VirusTotal as 
the basis for determination.

To detect unknown malicious traffic auto-
matically, ML-based solutions with relatively high 
accuracy and a low false alarm rate have been pro-
posed [2]. FlowGuard [10], for instance, inspects 
all packets passing through and identifies DDoS 
traffic, which is then blocked to protect IoT end-
point devices behind the edge. The Long Short-
Term Memory (LSTM) ML technique is applied 
because temporally correlated DDoS traffic can 
be precisely captured. Passban IDS [2] learns the 
system’s normal behavior during the training phase 
and then detects anomalies in incoming network 
traffic, particularly DDoS attacks. Additionally, to 
identify malicious traffic other than attack actions 
(i.e., stage 5), flow semantics are analyzed by inves-
tigating several consecutive interactions.

Traditionally, activ-
ities are compared 

with malicious ones 
in a signature data-
base predefined by 

security experts. 
If there is a match, 
then the activity is 

determined as suspi-
cious. 
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dIgItAl tWIn

Originated from intelligent manufacturing, a virtual 
twin that digitally projects a physical entity receives 
data from the physical counterpart and replicates 
its behavior [6]. With the aid of output from the 
virtual representation, real-time monitoring and 
controlling, fault diagnostics and early prediction, 
or dynamic optimization of the asset are enabled. 

DT has become increasingly prevalent in the 
realm of IoT, serving as virtualized counterparts to 
sensors, actuators [11], and other IoT devices. They 
find application across various domains including 
healthcare [12], where they simulate digital patients, 
as well as in intelligent vehicles and IoT device man-
agement [13]. For instance, through the execution 
of representative functionalities and close integration 
with physical sensors, software replicas can closely 
mimic real-world behavior. Consequently, DTs serve 
as specialized logical entities tailored to specifi c IoT 
applications [11]. Leveraging in-body, on-body, and 
environmental sensors along with aff ordable devices, 
it becomes feasible to create digital representations 
of patients linked to targeted individuals. By harness-
ing data collected from these sensors, it becomes 
possible to discern the activities experienced by the 
individual, thereby facilitating improved care outside 
traditional healthcare settings and enabling the prac-
tice of “precision medicine” [12]. 

In order to handle the enormous amount of 
data measured from the physical object, various 
kinds of ML algorithms are proposed in the vir-
tual twin [14]. In particular, a predictive model is 
responsible for predicting information using ML 
algorithms or neural networks so that further deci-
sions are made and trade-off s are analyzed [6].

fIrmWAre rehostIng for Iot cybersecurIty
By isolating execution from co-located physical 
hardware, emulation is now becoming a popular 
tool for software development, security analysis, 
and logic debugging [5]. The fi rmware of the tar-
geted IoT endpoint device is extracted and rehost-
ed within an emulation environment using three 
main approaches below.

User Program Emulation: As shown in Fig. 1b, 
the single binary of a particular service is execut-
ed as a process using QEMU user mode without 
emulating the entire fi rmware, kernel, and periph-
erals. A CPU emulator with a virtual stack and 
memory segment interprets and executes each 
instruction decoded from the binary. While pro-
cess-level emulation proves efficient and apt for 
intricate security tests on a single binary like fuzz-
ing, it does have drawbacks. Operations related 
to peripherals can lead to unexpected failures.

Hardware in The Loop (HITL): As illustrated 
in Fig. 1c, the CPU emulator in HITL can receive 
actual hardware responses when executing rele-
vant instructions, as they are forwarded to the real 
IoT hardware via the debug port. However, hard-
ware dependence inevitably reduces scalability 
and parallelism.

Full System Emulation: We can alternatively 
fully emulate the kernel, filesystem, and common 
peripherals using QEMU system mode, as depict-
ed in Fig. 1a. The advantages of independence and 
high fidelity come with the cost of laborious and 
error-prone manual confi gurations, given the hetero-
geneous architectures and peripherals in IoT devic-
es. Addressing the demand from a vast and rapidly 
increasing number of IoT devices, researchers have 
been focusing on automated emulation solutions. 

dt frAmeWork In IntellIgent Iot edr
Figure 2 depicts the proposed intelligent IoT EDR 
as a DT framework, aimed at monitoring, iden-
tifying, and thwarting malicious behavior at the 
system level. The DT is structured into data and 
model components. In Fig. 2a, the data compo-
nent primarily comprises emulated IoT devices 
facilitated by rehosting technology, a topic thor-
oughly discussed later. To comprehend the behav-
ior of these emulated devices, we’ve integrated a 
system-level monitoring module, detailed later. 
Network traffi  c bound for the actual IoT device is 
mirrored to the virtual DT’s data component for 
thorough system and network level scrutiny. The 
data extracted from this analysis is then fed into 
the model component for behavioral analysis.

In Fig. 2b, the malicious behavior detector 
focuses on scrutinizing system calls for abnormal 
commands and labeling irregular log files. Addi-
tionally, the command extractor depicted in Fig. 
2c identifi es commands within the abnormal logs, 
translates them into IDS rules, and deploys these 
rules to the EDR. Subsequent traffic exhibiting 
similar attack patterns will be promptly identifi ed 
and blocked based on these established rules.

rehosted fIrmWAre In dt
An emulated fi rmware is considered a DT of the 
actual IoT endpoint device since it operates exact-
ly the same as the actual device. With sufficient 
computing power, we opt for full system emula-
tion due to its high fi delity. To build the virtualized 
DT, we fi rst extract the fi rmware of the actual IoT 
device and then rehost it using a well-known emu-
lation tool, Firmadyne [15]. The fi rmware datasets 
we used are the same as those in the Firmadyne 
dataset package. We extracted the fi rmware using 
Binwalk, which involved unpacking compressed 
archives, extracting file systems, and isolating 
embedded files. This process allows for smooth 
acquisition of the fi lesystem and necessary mod-
ifications. Once we confirm the firmware archi-
tecture, we replace the original kernel to support 
essential system tools. Subsequently, the system 
is simulated using QEMU system-level emulation 
with appropriate configurations. Finally, the net-
work interface undergoes intensive confi guration, 
resulting in the successful establishment of the DT. 

Ensuring compatibility is crucial when integrating 
system-level monitoring modules into emulated fi rm-
ware. This involves testing and adjusting the kernel 
accordingly. Additionally, the diverse range of IoT 

FIGURE 1. Firmware Emulation Techniques.
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C. Digital Twin
Originated from intelligent manufacturing, a virtual twin

that digitally projects a physical entity receives data from the
physical counterpart and replicates its behavior [6]. With the
aid of output from the virtual representation, real-time moni-
toring and controlling, fault diagnostics and early prediction,
or dynamic optimization of the asset are enabled.

DT has become increasingly prevalent in the realm of IoT,
serving as virtualized counterparts to sensors, actuators [11],
and other IoT devices. They find application across various
domains including healthcare [12], where they simulate digital
patients, as well as in intelligent vehicles and IoT device man-
agement [13]. For instance, through the execution of represen-
tative functionalities and close integration with physical sen-
sors, software replicas can closely mimic real-world behavior.
Consequently, DTs serve as specialized logical entities tailored
to specific IoT applications [11]. Leveraging in-body, on-body,
and environmental sensors along with affordable devices, it
becomes feasible to create digital representations of patients
linked to targeted individuals. By harnessing data collected
from these sensors, it becomes possible to discern the activities
experienced by the individual, thereby facilitating improved
care outside traditional healthcare settings and enabling the
practice of “precision medicine” [12].

In order to handle the enormous amount of data measured
from the physical object, various kinds of ML algorithms are
proposed in the virtual twin [14]. In particular, a predictive
model is responsible for predicting information using ML
algorithms or neural networks so that further decisions are
made and trade-offs are analyzed [6].

D. Firmware Rehosting for IoT Cybersecurity
By isolating execution from co-located physical hardware,

emulation is now becoming a popular tool for software de-
velopment, security analysis, and logic debugging [5]. The
firmware of the targeted IoT endpoint device is extracted and
rehosted within an emulation environment using three main
approaches below.

1) User Program Emulation: As shown in Fig. 1 (b), the
single binary of a particular service is executed as a process us-
ing QEMU user mode without emulating the entire firmware,
kernel, and peripherals. A CPU emulator with a virtual stack
and memory segment interprets and executes each instruction
decoded from the binary. While process-level emulation proves
efficient and apt for intricate security tests on a single binary
like fuzzing, it does have drawbacks. Operations related to
peripherals can lead to unexpected failures.

2) Hardware in The Loop (HITL): As illustrated in Fig. 1
(c), the CPU emulator in HITL can receive actual hardware
responses when executing relevant instructions, as they are
forwarded to the real IoT hardware via the debug port.
However, hardware dependence inevitably reduces scalability
and parallelism.

3) Full System Emulation: We can alternatively fully em-
ulate the kernel, filesystem, and common peripherals using
QEMU system mode, as depicted in Fig. 1 (a). The advantages
of independence and high fidelity come with the cost of
laborious and error-prone manual configurations, given the
heterogeneous architectures and peripherals in IoT devices.
Addressing the demand from a vast and rapidly increasing
number of IoT devices, researchers have been focusing on
automated emulation solutions.

III. DT FRAMEWORK IN INTELLIGENT IOT EDR

Figure 2 depicts the proposed intelligent IoT EDR as a DT
framework, aimed at monitoring, identifying, and thwarting
malicious behavior at the system level. The DT is structured
into data and model components. In Figure 2 (a), the data
component primarily comprises emulated IoT devices facili-
tated by rehosting technology, a topic thoroughly discussed in
Section III-A. To comprehend the behavior of these emulated
devices, we’ve integrated a system-level monitoring module,
detailed in Section III-B. Network traffic bound for the actual
IoT device is mirrored to the virtual DT’s data component for
thorough system and network level scrutiny. The data extracted

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Internet of Things Magazine • November 2024 23

devices complicates automated firmware emulation. 
It’s essential to thoroughly examine the various ver-
sions of libraries utilized in the system. Sometimes 
we need to compile the relevant tools with a suit-
able cross-compiler to ensure compatibility. 

We present the first firmware emulation 
research within the context of DT, as compared to 
other studies. To assess fidelity in firmware rehost-
ing, the study [5] examines various methods and 
their respective levels of fidelity. While our emula-
tion achieves only module-level fidelity, we enhance 
the automation of our system, thereby improving 
scalability for further analysis. For instance, rather 
than prioritizing fidelity improvements, we might 
slightly modify the booting and kernel-related con-
figuration to match the virtual environment. This is 
advantageous because some analysis tools can only 
run on specific versions of the kernel.

System-Level Monitoring
In contrast to network-based IDS solutions, which 
can only monitor network traffic, the proposed DT 
framework incorporates a system-level monitoring 
module. This enables the comprehensive capture 
of system-level behaviors outlined in Steps 1 and 
3 in and earlier section. We specifically use the 
following three approaches for system-level moni-
toring: Strace, Mshell, and SystemTap. Strace and 
Mshell operate in user-space, while SystemTap 
operates in kernel-space. Detailed explanations 
are provided below.

Strace: As depicted in Fig. 3a, this is a typical 
debugging tool utilized for tracking system calls 
in progress. It operates at the user level and is 
implemented through the underlying ptrace 
probe. This tool allows us to observe the behav-
ior of a specific process by hooking into the IoT 
device. All system calls performed by the process 
are recorded for subsequent analysis.

Middle Shell (Mshell): The shell serves as a 
user interface for interacting with the underlying 
system, enabling users to execute commands. 
Our modification involves transforming the 
default shell into an Mshell, capable of logging all 
commands intended for execution by a process. 
These logged commands are subsequently for-
warded to the original shell for execution. Nota-
bly, unlike system calls, only executed commands 
are recorded in this solution.

SystemTap: Since the Strace and Mshell solu-
tions are tailored for specific processes, a com-
prehensive system-level monitoring approach is 
necessary when the targeted process is unknown. 
As shown in Fig. 3c, SystemTap is integrated into 
the hosted OS to analyze the behavior of all run-
ning processes, including the kernel, by recording 
system calls. This solution is notably less conspicu-
ous to user processes and is better suited for exam-
ining modern malware or fileless attacks equipped 
with sophisticated anti-detection technology.

Intelligent IoT Endpoint Detection 
and Response (EDR)

With the advantages of high fidelity and scalability, 
the system-level monitors integrated with the emu-
lated IoT system can capture the runtime behavior 
of IoT endpoint devices behind the edge, thereby 
opening the door to enable the detection of mali-
cious behavior. The presence of re-hosted firm-

ware in emulated IoT devices also offers a new 
potential avenue to implement proactive protec-
tion for IoT endpoint devices behind the edge. 

Network Architecture and Procedures
Figure 4 describes the network architecture of the 
proposed intelligent IoT EDR. Different from the 
abstract DT framework depicted in Fig. 2, this fig-
ure concentrates more on the operation proce-
dures and real traffic flow of the EDR . In particular, 
how the system-level malicious behavior of DT is 
detected and the corresponding attack is mitigated.
Step 0. Using the full system emulation tech-

niques mentioned earlier, the images of emu-
lated firmware are constructed and stored 
offline. Once an IoT endpoint device attaches 
to the EDR platform, its format is analyzed. 
The corresponding DT is efficiently launched 
by loading the images into the EDR.

Steps 1. and 2. The inbound traffic to the pro-
tected IoT devices mirrors the actual device 
and the DT. Since the DT is emulated from 
real firmware, it can be used for responding 
to the inbound traffic. However, in some cases 
DT may not send an appropriate response 
about peripheral devices, actual device assists 
DT to respond. The integrated system-level 
monitors intercept all the commands and 
system calls executed in the DT. In this case, 
even without malicious binary, the fileless 
attack can be identified. EDR could leverage 
the ML algorithm to determine if the down-
loaded binary or runtime behavior is malicious 
or not. The details of such endpoint detection 
will be described next.

Step 3. When malicious actions are detected, 
the EDR leverages the payload extractor 
mentioned in Fig. 2c to identify packets 
containing the malicious payload. Addition-
ally, both the actual device and the DT are 
rebooted to synchronize their states. Subse-

FIGURE 2. Framework for DTs.
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from this analysis is then fed into the model component for
behavioral analysis.

In Figure 2 (b), the malicious behavior detector focuses
on scrutinizing system calls for abnormal commands and
labeling irregular log files. Additionally, the command extrac-
tor depicted in Figure 2 (c) identifies commands within the
abnormal logs, translates them into IDS rules, and deploys
these rules to the EDR. Subsequent traffic exhibiting similar
attack patterns will be promptly identified and blocked based
on these established rules.

A. Rehosted Firmware in DT

An emulated firmware is considered a DT of the actual
IoT endpoint device since it operates exactly the same as the
actual device. With sufficient computing power, we opt for
full system emulation due to its high fidelity. To build the
virtualized DT, we first extract the firmware of the actual
IoT device and then rehost it using a well-known emula-
tion tool, Firmadyne [15]. The firmware datasets we used
are the same as those in the Firmadyne dataset package.
We extracted the firmware using Binwalk, which involved
unpacking compressed archives, extracting file systems, and
isolating embedded files. This process allows for smooth
acquisition of the filesystem and necessary modifications.
Once we confirm the firmware architecture, we replace the
original kernel to support essential system tools. Subsequently,
the system is simulated using QEMU system-level emulation
with appropriate configurations. Finally, the network interface
undergoes intensive configuration, resulting in the successful
establishment of the DT.

Ensuring compatibility is crucial when integrating system-
level monitoring modules into emulated firmware. This in-
volves testing and adjusting the kernel accordingly. Addition-
ally, the diverse range of IoT devices complicates automated
firmware emulation. It’s essential to thoroughly examine the
various versions of libraries utilized in the system. Sometimes
we need to compile the relevant tools with a suitable cross-
compiler to ensure compatibility.

Fig. 3. System-level Monitoring

We present the first firmware emulation research within
the context of DT, as compared to other studies. To assess
fidelity in firmware rehosting, the study [5] examines various
methods and their respective levels of fidelity. While our
emulation achieves only module-level fidelity, we enhance the
automation of our system, thereby improving scalability for
further analysis. For instance, rather than prioritizing fidelity
improvements, we might slightly modify the booting and
kernel-related configuration to match the virtual environment.
This is advantageous because some analysis tools can only run
on specific versions of the kernel.

B. System-level Monitoring

In contrast to network-based IDS solutions, which can only
monitor network traffic, the proposed DT framework incor-
porates a system-level monitoring module. This enables the
comprehensive capture of system-level behaviors outlined in
Steps 1 and 3 in Section II-A. We specifically use the following
three approaches for system-level monitoring: Strace, Mshell,
and SystemTap. Strace and Mshell operate in user-space, while
SystemTap operates in kernel-space. Detailed explanations are
provided below.

1) Strace: As depicted in Fig. 3 (a), this is a typical
debugging tool utilized for tracking system calls in progress.
It operates at the user level and is implemented through the
underlying ptrace probe. This tool allows us to observe the
behavior of a specific process by hooking into the IoT device.
All system calls performed by the process are recorded for
subsequent analysis.

2) Middle shell (Mshell): The shell serves as a user in-
terface for interacting with the underlying system, enabling
users to execute commands. Our modification involves trans-
forming the default shell into an Mshell, capable of logging
all commands intended for execution by a process. These
logged commands are subsequently forwarded to the original
shell for execution. Notably, unlike system calls, only executed
commands are recorded in this solution.
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quently, a YARA rule corresponding to the 
identified packets is constructed and relayed 
to the IDS within the EDR, where we look for 
networking-related command text strings.

Step 4. The IDS inside EDR will update the 
rule database according to the information 
received from the DT. 

Step 5. The malicious traffic directed to the actu-
al IoT endpoint device is immediately blocked. 
As a result, endpoint detection and protection 
are enabled via emulated DT’s aid.

Endpoint Detection
Our endpoint detection acquires system-level 
behavior with the assistance of the emulated DT. 
The system-level data is then converted into a par-
ticular format to serve as input for the proposed 
detector. This detector consists of three phases: 

1. Raw data collection
2. Feature extraction and pre-processing
3. Verification and analysis
We implement an ML-based detector that reasons 
about the semantics of system-level log sequenc-
es for identifying malicious behavior.

Raw Data Collection: The system-level mon-
itor collects the system call sequence as the raw 
data. The data is labeled according to the type of 
target process and binary, e.g., malware or benign 
ware. Following is an example of raw data.

734 1629037867.467243 open(“/dev/FTWDT101 
watchdog”, O_RDWR unfinished …
729 1629037867.346495 write(1, “Yowai: Raping 
you sorry 0”, 24) = 24 0.001728
732 1629037867.664298 read(0, unfinished ... 
728 1629485115.479671 close(3) = 0 0.000215
728 1629485115.510892 ioctl(0, TCGETS, 0x7ec-
3da5c) = -1 ENOTTY (Inappropriate ioctl for 
device) 0.000199

Feature Extraction and PrePprocessing: The 
system-level monitor collects the system call 
sequence as the raw data, consisting of system 
call name, system call parameters, and return 
value. We simply extract the name of the system 
call as features for the following processing. The 
parameters of the system calls are not considered 
to prevent confusion to the machine learning 
model. Then we concatenate names of system 
calls into a chronological sequence. The previous 
example after feature extraction becomes

open write read close ioctl

Verification and Analysis: We apply TF-IDF to 
convert system call sequences into vectors. If the 
entire dataset contains 167 different system call 
names, the vector dimension is (1,167). For exam-
ple, if the dataset only contains the following two 
system call name sequences:

1: read read write write open close ioctl
2: open read write open read write

By using TFIDF, the dataset is converted as

close ioctl open read write
1: 0.390548~0.390548~0.277878~0.555756~0.555756
2: 0.000000~0.000000~0.577350~0.577350~0.577350

The pre-processed features are then inputted 
into the ML model for detection, where Support 
Vector Machine (SVM) and Random Forest (RF) 
algorithms are applied.

After analyzing the system-level behavior, the 
packets containing malicious behavior will be 
captured. To enhance accuracy, we built another 
ML-based detector that considers the relationship 
of network traffic for identifying malicious behav-
ior. As shown in Table 1, most IoT endpoint devic-
es test the connection status by constructing DNS 
queries to a few domains, such as google.com. 
The cumulative count of DNS queries is beneficial. 
Additionally, since IoT endpoint devices do not 
actively establish connections to other devices, the 
number of unique IP addresses plays an important 
role in the features. For model selection, we chose 
the Support Vector Machine (SVM) and Random 
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3) SystemTap: Since the Strace and Mshell solutions are
tailored for specific processes, a comprehensive system-level
monitoring approach is necessary when the targeted process is
unknown. As shown in Fig. 3 (c), SystemTap is integrated into
the hosted OS to analyze the behavior of all running processes,
including the kernel, by recording system calls. This solution is
notably less conspicuous to user processes and is better suited
for examining modern malware or fileless attacks equipped
with sophisticated anti-detection technology.

IV. INTELLIGENT IOT ENDPOINT DETECTION AND
RESPONSE (EDR)

With the advantages of high fidelity and scalability, the
system-level monitors integrated with the emulated IoT system
can capture the runtime behavior of IoT endpoint devices
behind the edge, thereby opening the door to enable the
detection of malicious behavior. The presence of re-hosted
firmware in emulated IoT devices also offers a new potential
avenue to implement proactive protection for IoT endpoint
devices behind the edge.

A. Network Architecture and Procedures

Fig. 4 describes the network architecture of the proposed
intelligent IoT EDR. Different from the abstract DT framework
depicted in Fig. 2, this figure concentrates more on the
operation procedures and real traffic flow of the EDR . In
particular, how the system-level malicious behavior of DT is
detected and the corresponding attack is mitigated.
Step 0. Using the full system emulation techniques mentioned

in Sec. III-A, the images of emulated firmware are con-
structed and stored offline. Once an IoT endpoint device
attaches to the EDR platform, its format is analyzed. The
corresponding DT is efficiently launched by loading the
images into the EDR.

Steps 1. and 2. The inbound traffic to the protected IoT
devices mirrors the actual device and the DT. Since
the DT is emulated from real firmware, it can be used
for responding to the inbound traffic. However, in some
cases DT may not send an appropriate response about
peripheral devices, actual device assists DT to respond.
The integrated system-level monitors intercept all the
commands and system calls executed in the DT. In this
case, even without malicious binary, the fileless attack can
be identified. EDR could leverage the ML algorithm to
determine if the downloaded binary or runtime behavior
is malicious or not. The details of such endpoint detection
will be described in Section IV-B.

Step 3. When malicious actions are detected, the EDR lever-
ages the payload extractor mentioned in Fig. 2 (c) to
identify packets containing the malicious payload. Addi-
tionally, both the actual device and the DT are rebooted
to synchronize their states. Subsequently, a YARA rule
corresponding to the identified packets is constructed and
relayed to the IDS within the EDR, where we look for
networking-related command text strings.

Step 4. The IDS inside EDR will update the rule database
according to the information received from the DT.

Step 5. The malicious traffic directed to the actual IoT end-
point device is immediately blocked. As a result, endpoint
detection and protection are enabled via emulated DT’s
aid.

B. Endpoint Detection

Our endpoint detection acquires system-level behavior with
the assistance of the emulated DT. The system-level data is
then converted into a particular format to serve as input for the
proposed detector. This detector consists of three phases: (a)
raw data collection, (b) feature extraction and pre-processing,
and (c) verification and analysis. We implement an ML-based
detector that reasons about the semantics of system-level log
sequences for identifying malicious behavior.

1) Raw Data Collection: The system-level monitor
collects the system call sequence as the raw data. The data is
labeled according to the type of target process and binary, e.g.,
malware or benign ware. Following is an example of raw data.

734 1629037867.467243 open("/dev/FTWDT101
watchdog", O_RDWR unfinished ...
729 1629037867.346495 write(1, "Yowai:
Raping you sorry 0", 24) = 24 0.001728
732 1629037867.664298 read(0, unfinished
...
728 1629485115.479671 close(3) = 0
0.000215
728 1629485115.510892 ioctl(0, TCGETS,
0x7ec3da5c) = -1 ENOTTY (Inappropriate
ioctl for device) 0.000199

2) Feature Extraction and Pre-processing: The system-
level monitor collects the system call sequence as the raw
data, consisting of system call name, system call parameters,
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from this analysis is then fed into the model component for
behavioral analysis.

In Figure 2 (b), the malicious behavior detector focuses
on scrutinizing system calls for abnormal commands and
labeling irregular log files. Additionally, the command extrac-
tor depicted in Figure 2 (c) identifies commands within the
abnormal logs, translates them into IDS rules, and deploys
these rules to the EDR. Subsequent traffic exhibiting similar
attack patterns will be promptly identified and blocked based
on these established rules.

A. Rehosted Firmware in DT

An emulated firmware is considered a DT of the actual
IoT endpoint device since it operates exactly the same as the
actual device. With sufficient computing power, we opt for
full system emulation due to its high fidelity. To build the
virtualized DT, we first extract the firmware of the actual
IoT device and then rehost it using a well-known emula-
tion tool, Firmadyne [15]. The firmware datasets we used
are the same as those in the Firmadyne dataset package.
We extracted the firmware using Binwalk, which involved
unpacking compressed archives, extracting file systems, and
isolating embedded files. This process allows for smooth
acquisition of the filesystem and necessary modifications.
Once we confirm the firmware architecture, we replace the
original kernel to support essential system tools. Subsequently,
the system is simulated using QEMU system-level emulation
with appropriate configurations. Finally, the network interface
undergoes intensive configuration, resulting in the successful
establishment of the DT.

Ensuring compatibility is crucial when integrating system-
level monitoring modules into emulated firmware. This in-
volves testing and adjusting the kernel accordingly. Addition-
ally, the diverse range of IoT devices complicates automated
firmware emulation. It’s essential to thoroughly examine the
various versions of libraries utilized in the system. Sometimes
we need to compile the relevant tools with a suitable cross-
compiler to ensure compatibility.

Fig. 3. System-level Monitoring

We present the first firmware emulation research within
the context of DT, as compared to other studies. To assess
fidelity in firmware rehosting, the study [5] examines various
methods and their respective levels of fidelity. While our
emulation achieves only module-level fidelity, we enhance the
automation of our system, thereby improving scalability for
further analysis. For instance, rather than prioritizing fidelity
improvements, we might slightly modify the booting and
kernel-related configuration to match the virtual environment.
This is advantageous because some analysis tools can only run
on specific versions of the kernel.

B. System-level Monitoring

In contrast to network-based IDS solutions, which can only
monitor network traffic, the proposed DT framework incor-
porates a system-level monitoring module. This enables the
comprehensive capture of system-level behaviors outlined in
Steps 1 and 3 in Section II-A. We specifically use the following
three approaches for system-level monitoring: Strace, Mshell,
and SystemTap. Strace and Mshell operate in user-space, while
SystemTap operates in kernel-space. Detailed explanations are
provided below.

1) Strace: As depicted in Fig. 3 (a), this is a typical
debugging tool utilized for tracking system calls in progress.
It operates at the user level and is implemented through the
underlying ptrace probe. This tool allows us to observe the
behavior of a specific process by hooking into the IoT device.
All system calls performed by the process are recorded for
subsequent analysis.

2) Middle shell (Mshell): The shell serves as a user in-
terface for interacting with the underlying system, enabling
users to execute commands. Our modification involves trans-
forming the default shell into an Mshell, capable of logging
all commands intended for execution by a process. These
logged commands are subsequently forwarded to the original
shell for execution. Notably, unlike system calls, only executed
commands are recorded in this solution.
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Forest (RF) algorithms to train our dataset.

Validation and Performance Evaluation

Experimental Setup
The intelligent EDR in the experimental environ-
ment is implemented using an Intel NUC with an 
Intel Core i3-8109U processor, 32GB RAM, and a 
256GB SSD. Ubuntu 18.04 is chosen as the oper-
ating system, and Security Onion is selected as the 
IDS engine with data visualization tools. To avoid 
direct modification of incoming network packets, 
Security Onion uses a mirror port to replicate net-
work traffic, so external network interface cards are 
needed on the NUC to achieve this function.

Regarding the actual IoT endpoint devices for 
protection, commercial digital video recorders 
(DVRs), IP cameras, and routers are deployed with 
ARM, MIPS, and X86 architectures. Depending on 
the IoT device, we obtain and extract its firmware 
and activate a virtual DT for the IoT device using 
firmware emulation techniques, ensuring it possess-
es the same characteristics as the actual device. At 
the same time, we compile the corresponding ker-
nel module using a cross-compiler for different archi-
tectures, integrate it into the DT, and collect system 
calls using the system-level monitoring module.

Attack Implementation
Regarding malware attacks, we implemented Mirai 
and its variants using multiple publicly available 
proofs of concept (PoCs) and Metasploit mod-
ules.1 Additionally, we implemented four PoCs for 
fileless attacks targeting endpoint devices, includ-
ing CVE-2020-10514, CVE-2019-10999, and CVE-
2020-10987. Two notorious attacks were selected: 
buffer overflow and command injection. A buffer 
overflow occurs when large data is sent, exceeding 
the buffer size, which can cause system malfunc-
tions or allow attackers to take control. Command 
Injection is a common type of web injection attack 
where administrators fail to filter sensitive charac-
ters in a website’s input form, enabling attackers to 
send payloads to execute arbitrary commands.

Dataset
By applying the developed malware and fileless 
attacks mentioned in the previous subsection with-
in our experimental environment, we generated 
trace results through fuzzing, some of which can 
be labeled as malware. To avoid a high false alarm 
rate, we first collect and analyze historical data to 
understand what typical behavior looks like for 
commands and log entries. Here are two examples:
1. `dd if=/dev/zero of=/dev/sda 
bs=512 count=1`: This command has the 
potential to cause disk wipe or data corruption. 
We need to check if this command is executed 
during routine maintenance or if it is unexpect-
ed, which could indicate data corruption. 

2. `Aug 8 23:45:12 server 
sshd[1234]: Failed password 
for invalid user admin from 
192.168.1.100 port 22 ssh2` : 
This log entry could indicate a brute force 
attack or unauthorized access attempt. We 
compare this against historical failed login 
attempts to determine if it is part of a larger 
brute force attack. Moreover, system bina-
ries such as init, /sbin/syslogd, or ~/

bin/sh were executed to generate datasets 
labeled as benign. The dataset encompasses 
three architectures, with the number of trac-
es for ARM, MIPS, and X86 being 457,373; 
579,339; and 152,458, respectively. 

Evaluation Matrices
In the evaluation phase, we adopted the common 
evaluation metrics, namely, accuracy, recall, preci-
sion, false-positive rate, and F1-measure, to assess 
the performance of our proposed method. These 
metrics are defined based on the following inter-
mediate measures.
•	 True positive (TP): samples correctly classified 

as positive.
•	 False positive (FP): samples incorrectly classi-

fied as positive.
•	 True negative (TN): samples correctly classi-

fied as negative.
•	 False negative (FN): samples incorrectly classi-

fied as positive.
Accuracy refers to the proportion of correct 

judgments of true and false. Precision refers to 
how much is true when the judgment is true. 
Recall is the probability of the samples in the posi-
tive class being classified correctly:
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TABLE II
PERFORMANCE COMPARISON OF RANDOM FOREST AND SVM IN

SYSTEM-LEVEL DETECTOR AND NETWORK TRAFFIC DETECTOR

System-level Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.22% 99.29% 99.05% 99.54%

SVM 94.72% 96.78% 96.01% 97.55%

Network Traffic Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.94% 99.8% 99.95% 99.95%

SVM 99.35% 98.47% 99.43% 99.43%

and F1-measure, to assess the performance of our proposed
method. These metrics are defined based on the following
intermediate measures.

• True positive (TP): samples correctly classified as posi-
tive.

• False positive (FP): samples incorrectly classified as
positive.

• True negative (TN): samples correctly classified as neg-
ative.

• False negative (FN): samples incorrectly classified as
positive.

Accuracy refers to the proportion of correct judgments of true
and false. Precision refers to how much is true when the
judgment is true. Recall is the probability of the samples in
the positive class being classified correctly:

Recall =
TP

TP + FN
. (1)

F1-measure is the weighted average of precision and recall:

F1 measure =
2 ∗ (Recall ∗ Precision)

Recall + Precision
. (2)

E. Experimental Results

The experiment was conducted on a dataset comprising all
samples from our dataset. We utilized 10-fold cross-validation
to validate our experimental results, ensuring the robustness of
the experiment. The dataset was split into a training dataset,
containing seventy percent of the overall dataset, and a testing
dataset, containing thirty percent of the overall dataset. The
results were averaged over ten independent runs, with the
training and test sets determined by 10-fold cross-validation.
Table II presents the experimental results of the two models.
It is evident that Random Forest outperforms the other model,
especially in terms of recall (i.e., 100%). Specifically, in the
system-level detector, Random Forest achieved an accuracy
of 99.22%, an F1-score of 99.29%, precision of 99.05%, and
recall of 99.54%, outperforming SVM, which achieved lower
accuracy and precision. Similarly, in the network traffic detec-
tor, Random Forest maintained a high level of performance,
with nearly perfect accuracy (99.94%), F1-score (99.8%), pre-
cision (99.95%), and recall (99.95%). These results highlight

the superior robustness and reliability of Random Forest in
both detection scenarios, making it a more effective choice
for IoT EDR systems. In particular, Random Forest’s ability
to maintain a strong balance between precision and recall
suggests that it is highly capable of minimizing false positives
and negatives, which is critical in maintaining security without
overwhelming administrators with false alerts.

In the experiment, we exploit a command injection vulnera-
bility in a commercial DVR device and then launch the telnet
service. After observing the system call write interacting
with the web service via a system-level monitor, we identify
the packets containing the malicious payload and convert the
payload into an IDS rule. For example, due to the command
injection vulnerability in the DVR web service, the IDS rule
is:
alert tcp any any -> any any (msg:

"Command injection"; content: "GET
/goform/setUsbUnload/.js?deviceName=A;.*";
pcre:"/[a-zA-Z0-9]2/"; sid:101;)

VI. CONCLUSION

In order to enable a feasible detection and response solu-
tion for resource-constrained IoT endpoint devices, this paper
leverages a powerful edge to establish a DT of the actual IoT
endpoint devices through firmware emulation. Integrating a
system-level monitoring module with a software-defined DT
could investigate the precise operational behavior of an IoT
device, thereby resolving the drawbacks of typical network-
based IDS solutions where only packets can be observed.
We propose an ML-based detector in EDR where system
calls are leveraged to reason the operational semantics, allow-
ing harmful behavior to be detected. With the aid of IDS,
malicious traffic to the actual IoT device can be blocked,
thereby achieving endpoint response. Experimental results
demonstrate that the EDR successfully captures malware and
fileless attacks targeting commercial IoT endpoints deployed
behind the edge with high accuracy, reaching 99.94%. As
the first IoT DT facilitating the detection and protection of
IoT endpoint devices, this paper demonstrates the potential of
firmware emulation in securing the IoT paradigm. Inspired by
this paper, many DT applications using firmware emulation
are expected to be proposed for the security enhancement of
IoT endpoint devices.
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Experimental Results
The experiment was conducted on a dataset com-
prising all samples from our dataset. We utilized 
10-fold cross-validation to validate our experimental 
results, ensuring the robustness of the experiment. 
The dataset was split into a training dataset, con-
taining seventy percent of the overall dataset, and 
a testing dataset, containing thirty percent of the 
overall dataset. The results were averaged over ten 
independent runs, with the training and test sets 
determined by 10-fold cross-validation. Table 2 pres-
ents the experimental results of the two models. It is 
evident that Random Forest outperforms the other 
model, especially in terms of recall (i.e., 100%). Spe-
cifically, in the system-level detector, Random For-
est achieved an accuracy of 99.22%, an F1-score 
of 99.29%, precision of 99.05%, and recall of 
99.54%, outperforming SVM, which achieved lower 
accuracy and precision. Similarly, in the network 
traffic detector, Random Forest maintained a high 
level of performance, with nearly perfect accuracy 

TABLE 1. Extract feature from network traffic.

Type Feature

Data Size TCP Upload Bytes, TCP Download Bytes, UCP Upload Bytes, UCP 
Download Bytes

Packet Count TCP Upload Packets, TCP Download Packets, UCP Upload Pack-
ets, UCP Download Packets

Counter Total Number of DNS Domain Name, Total Number of Unique IP

Other Direction of Connection
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(99.94%), F1-score (99.8%), precision (99.95%), 
and recall (99.95%). These results highlight the 
superior robustness and reliability of Random For-
est in both detection scenarios, making it a more 
effective choice for IoT EDR systems. In particular, 
Random Forest’s ability to maintain a strong balance 
between precision and recall suggests that it is high-
ly capable of minimizing false positives and nega-
tives, which is critical in maintaining security without 
overwhelming administrators with false alerts.

In the experiment, we exploit a command 
injection vulnerability in a commercial DVR 
device and then launch the telnet service. After 
observing the system call \texttt{write} interacting 
with the web service via a system-level monitor, 
we identify the packets containing the malicious 
payload and convert the payload into an IDS rule. 
For example, due to the command injection vul-
nerability in the DVR web service, the IDS rule is: 

alert tcp any any -> any any (msg: “Command 
injection”; content: “GET /goform/setUsbUn-
load/.js?deviceName=A;.*”; pcre:”/[a-zA-Z0-9]
{2}/”; sid:101;)

Conclusion
In order to enable a feasible detection and 
response solution for resource-constrained IoT 
endpoint devices, this article leverages a powerful 
edge to establish a DT of the actual IoT endpoint 
devices through firmware emulation. Integrating a 
system-level monitoring module with a software-de-
fined DT could investigate the precise operational 
behavior of an IoT device, thereby resolving the 
drawbacks of typical network-based IDS solutions 
where only packets can be observed. We propose 
an ML-based detector in EDR where system calls 
are leveraged to reason the operational semantics, 
allowing harmful behavior to be detected. With 
the aid of IDS, malicious traffic to the actual IoT 
device can be blocked, thereby achieving endpoint 
response. Experimental results demonstrate that 
the EDR successfully captures malware and file-
less attacks targeting commercial IoT endpoints 
deployed behind the edge with high accuracy, 
reaching 99.94%. As the first IoT DT facilitating the 
detection and protection of IoT endpoint devices, 
this article demonstrates the potential of firmware 
emulation in securing the IoT paradigm. Inspired 
by this article, many DT applications using firm-
ware emulation are expected to be proposed for 
the security enhancement of IoT endpoint devices. 
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TABLE 2. Performance comparison of Random Forest and SVM in system-level detec-
tor and network traffic detector.

System-level Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.22% 99.29% 99.05% 99.54%

SVM 94.72% 96.78% 96.01% 97.55%

Network Traffic Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.94% 99.8% 99.95% 99.95%

SVM 99.35% 98.47% 99.43% 99.43%
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