
20 IEEE Internet of Things Magazine • November 20242576-3180/24/$25.00 © 2024 IEEE

AbstrAct
The properties of short time-to-market, hetero-

geneity, constrained resources, and unfriendly inter-
faces for IoT endpoint devices render system-based
security mechanisms in traditional desktops, such
as antivirus, inapplicable. Moreover, popular net-
work-based security solutions, such as IDS, might
not completely detect and mitigate the rising fileless
IoT attacks. This article leverages recent innovation,
firmware emulation, to enable a digital twin (DT) of
a targeted actual IoT endpoint device and to realize
an intelligent IoT endpoint detection and response
(EDR) platform. Inbound traffic to the actual IoT end-
point device is mirrored to the DT in the platform,
and the system-level monitoring module integrated
into the softwarized DT provides deep IoT endpoint
detection in ways that are not possible on physical
IoT endpoint devices. Machine learning algorithms
are proposed to identify malicious behavior from
system calls and network packets collected from sys-
tem-level and network-level monitors, and suspicious
packets containing harmful commands are further
determined. The EDR consequently updates the IDS
rules so that traffic to the actual IoT endpoint device
with the same malicious patterns is recognized and
blocked, thereby achieving endpoint response. In the
experiment, we enable emulation of IoT endpoint
devices with ARM, MIPS, and X86 architectures and
realize Mirai malware and remote code execution
(RCE) attacks to validate the proposed EDR platform.
With a 99.94% accuracy rate in attack determination,
we believe that the proposed solution is feasible for
the protection of IoT endpoint devices behind the
edge. Such outcomes identify secure functionalities
that DT using firmware emulation could offer in the
IoT paradigm, thereby opening the door to innova-
tive mechanisms to combat IoT attacks.

IntroductIon
With sensing, computing, and communication
capabilities, the Internet of Things (IoT) bridges the
physical world and cyberspace, providing various
kinds of applications to humans. The IoT frame-
work comprises endpoint sensors and actuators
(known as IoT endpoint devices), infrastructure
edge nodes for data relaying (known as edge
nodes), and IoT application servers. The fact that
any modification to IoT devices in the cyber world

will affect users’ safety and privacy makes IoT a
valuable target for adversaries. Moreover, IoT appli-
cations are typically designed for specific purposes,
and instead of security requirements, aspects such
as cost, performance, or power are the main con-
siderations during the design process. For example,
the short time-to-market increases the possibility of
hard-coded passwords, thereby making IoT end-
points vulnerable to malware infection and fileless
attacks [1]. Consequently, the security issue in IoT
has been an ever-increasing concern.

Without sufficient computing power and a
convenient access interface, traditional well-de-
veloped host-based protection mechanisms (e.g.,
antivirus) cannot be directly shifted into the IoT
paradigm. Network-based solutions located at
edge nodes such as a firewall or intrusion detec-
tion system (IDS) are feasible, where flow and
packets to/from IoT endpoint devices are mon-
itored and malicious ones are identified and
blocked [2]. Various kinds of features, such as
traffic volume, IP address, and port number, flow
semantics, or payload and data, are extracted
for the estimation of malicious traffic or malfunc-
tioning IoT devices [3]. The powerful machine
learning (ML) algorithms are applied as inference
techniques from measured features to detect
unknown malicious traffic automatically [2].

Although ML-based network detectors remark-
ably improved the defense performance of IoT
endpoint devices, the fundamental issue that only
network traffic can be utilized for analysis still restricts
the degree of protection. E-Spion [4] first leverages
system-level information such as CPU utilization or
system call during the execution of the target pro-
cess to determine the abnormal behavior. However,
E-Spion suggests that the physical hardware of an
IoT device should be connected to the IDS, which
introduces a hardware dependence issue and is
not scalable. By virtually rehosting firmware into an
emulated IoT system, the operations of firmware are
virtualized and decoupled from the original IoT end-
point hardware. The barriers of constrained resourc-
es and inaccessibility in IoT endpoint devices are
tackled accordingly [5]. The emulated IoT endpoint
being enabled with powerful computation capability
could operate exactly the same as the original IoT
endpoint hardware. Acting as a virtual replica, the

Shin-Ming Cheng, Yi-Ching Lui, Nien-Jen Tsai, and Bing-Kai Hong

The authors are with National Taiwan University of Science and Technology, Taiwan; Shin-Ming Cheng is also with the Research
Center for Information Technology Innovation, Academia Sinica, Taiwan. Nien-Jen Tsai is the corresponding author.

Toward Intelligent IoT Endpoint Detection
and Response Using Digital Twins via

Firmware Emulation

Digital Object Identifier: 10.1109/IOTM.001.2400070

IOT SECURITY AND PROVISIONING IN CYBER-ENABLED NICHE CRITICAL INFRASTRUCTURE

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • November 2024 21

emulated IoT endpoint could reflect the current sta-
tus in high fidelity and is considered as a Digital Twin
(DT) of the original IoT endpoint hardware [6].

By integrating system-level monitors in vir-
tualized DT, the system behavior during opera-
tion such as system call or instruction executed
can be well captured [7], which complements
network-based solutions. Rather than directly
enabling dynamic analysis and assessment in the
emulated IoT system (e.g., fuzzing and concol-
ic execution), this article achieves system-level
detection in emulated IoT devices so that the
original IoT endpoint is protected. In particular,
the system-level monitors in the emulated IoT sys-
tem apply an ML algorithm to identify the mali-
cious action and determine the corresponding
network traffic or packets. Then the edge could
easily block suspicious traffic incurring the mali-
cious activity so that IoT endpoint devices behind
the edge are protected. We believe such IoT end-
point detection and response (EDR) is the first fea-
sible solution without the support of IoT hardware
and thus is much more scalable and efficient. We
believe that introducing an emulated IoT system
that acts as DT paves the way to designing prac-
tical defenses and future research that uses this
as a foundation are expected to be developed as
new security solutions for IoT endpoint devices.

The contributions of our study are as follows,
• Digital Twin Framework. Designed and imple-

mented a digital twin framework that uses firm-
ware emulation to create virtualized replicas of
IoT devices for security analysis.

• Enhanced System-Level Monitoring. Advanced
system-level monitoring capabilities with
Strace, Mshell, and SystemTap leverage digital
twins to detect and respond to potential securi-
ty threats in IoT devices.

• Firmware Vulnerabilities Identification. Iden-
tified three previously known vulnerabilities in
IoT firmware through testing and analysis using
the digital twin framework.
The remainder of this article is organized as

follows. We survey the existing research in net-
work-based edge detectors and DT. The core
technology applied to enable CDT, firmware
rehosting, is extensively described. The novel intel-
ligent IoT EDR based on the emulated IoT system
is proposed and the experimental results are dis-
cussed. Finally, we conclude this work.

bAckground And relAted Work

Iot AttAcks
Recently, IoT botnets and malware received lots of
attention due to the Mirai’s source-code release and
damage on global websites from its variants. More-
over, hackers exploit existing or unknown vulnerabil-
ities on the victim devices to achieve fileless attacks
without transporting a malicious binary [1]. The cur-
rent IoT attacks consist of following stages [8]:
Stage 0: Scanning. By investigating reactions of

crafted requests, the adversary could locate
and identify vulnerable victims for the follow-
ing attacks.

Stage 1: Exploitation. It is typically achieved by
brute force password guessing or exploiting
RCE vulnerabilities to gain access to the victim.

Stage 2: Downloading. The malicious binary is
delivered from a loader to the victim.

Stage 3a: Execution. The victim is compromised
via the execution of payload.

Stage 3b: Compromise. The adversary com-
pletely takes over the full control of the victim
and could manipulate the victim persistently.

Stage 4: Communication. The victim commu-
nicates with the Command and Control (C2)
server or the adversary and receives instruc-
tions from them.

Stage 5: Attack Action. The compromised vic-
tims acting as bots or relays launch stealth
attacks such as distributed denial-of-service
(DDoS) or lateral movement.
Before launching a malware attack, an adver-

sary first collects publicly available IoT devices
using a search engine such as shodan, which is
often referred to as reconnaissance (see Step 0).
The infection is typically achieved by brute force
password guessing (see Step 1). In the download-
ing stage, the adversary typically leverages wget,
curl, or echo commands to download malware
to the victim (see Step 2), and then execute mal-
ware to infect the IoT device to form a botnet
(see Step 3a). Unlike a fileless attack, an adversary
will use the infected victims to connect to a C2
server (see Step 4), so that the hacker can control
a large number of infected zombies via C2 server
to launch DDoS attacks against specific services
in a short period of time (see Step 5).

Regarding fileless attacks, the adversary delib-
erately hides their actions using known RCE vul-
nerabilities and leaves no files behind (see Step 1),
thereby increasing the difficulty for later forensics
[1]. Subsequently, the adversary can implant back-
doors into the chosen victim devices to execute
advanced persistent threats (see Step 3b). Such
attacks are highly suitable for conducting subse-
quent attacks such as privilege escalation, data theft,
information exposure, or network compromise.

Iot netWork-bAsed detector
With powerful computing capability, detectors
located could monitor the communication traffic
from/to the targeted IoT endpoints in real-time
[2]. Such network-based IDS extracts features
from the packet header, payload, or network flow
and further recognizes specific activities from
the measured features [3]. Traditionally, activi-
ties are compared with malicious ones in a signa-
ture database predefined by security experts. If
there is a match, then the activity is determined
as suspicious. For example, Heimdall [9] leverages
whitelist and blacklist queries from VirusTotal as
the basis for determination.

To detect unknown malicious traffic auto-
matically, ML-based solutions with relatively high
accuracy and a low false alarm rate have been pro-
posed [2]. FlowGuard [10], for instance, inspects
all packets passing through and identifies DDoS
traffic, which is then blocked to protect IoT end-
point devices behind the edge. The Long Short-
Term Memory (LSTM) ML technique is applied
because temporally correlated DDoS traffic can
be precisely captured. Passban IDS [2] learns the
system’s normal behavior during the training phase
and then detects anomalies in incoming network
traffic, particularly DDoS attacks. Additionally, to
identify malicious traffic other than attack actions
(i.e., stage 5), flow semantics are analyzed by inves-
tigating several consecutive interactions.

Traditionally, activ-
ities are compared

with malicious ones
in a signature data-
base predefined by

security experts.
If there is a match,
then the activity is

determined as suspi-
cious.

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • November 202422

dIgItAl tWIn

Originated from intelligent manufacturing, a virtual
twin that digitally projects a physical entity receives
data from the physical counterpart and replicates
its behavior [6]. With the aid of output from the
virtual representation, real-time monitoring and
controlling, fault diagnostics and early prediction,
or dynamic optimization of the asset are enabled.

DT has become increasingly prevalent in the
realm of IoT, serving as virtualized counterparts to
sensors, actuators [11], and other IoT devices. They
find application across various domains including
healthcare [12], where they simulate digital patients,
as well as in intelligent vehicles and IoT device man-
agement [13]. For instance, through the execution
of representative functionalities and close integration
with physical sensors, software replicas can closely
mimic real-world behavior. Consequently, DTs serve
as specialized logical entities tailored to specifi c IoT
applications [11]. Leveraging in-body, on-body, and
environmental sensors along with aff ordable devices,
it becomes feasible to create digital representations
of patients linked to targeted individuals. By harness-
ing data collected from these sensors, it becomes
possible to discern the activities experienced by the
individual, thereby facilitating improved care outside
traditional healthcare settings and enabling the prac-
tice of “precision medicine” [12].

In order to handle the enormous amount of
data measured from the physical object, various
kinds of ML algorithms are proposed in the vir-
tual twin [14]. In particular, a predictive model is
responsible for predicting information using ML
algorithms or neural networks so that further deci-
sions are made and trade-off s are analyzed [6].

fIrmWAre rehostIng for Iot cybersecurIty
By isolating execution from co-located physical
hardware, emulation is now becoming a popular
tool for software development, security analysis,
and logic debugging [5]. The fi rmware of the tar-
geted IoT endpoint device is extracted and rehost-
ed within an emulation environment using three
main approaches below.

User Program Emulation: As shown in Fig. 1b,
the single binary of a particular service is execut-
ed as a process using QEMU user mode without
emulating the entire fi rmware, kernel, and periph-
erals. A CPU emulator with a virtual stack and
memory segment interprets and executes each
instruction decoded from the binary. While pro-
cess-level emulation proves efficient and apt for
intricate security tests on a single binary like fuzz-
ing, it does have drawbacks. Operations related
to peripherals can lead to unexpected failures.

Hardware in The Loop (HITL): As illustrated
in Fig. 1c, the CPU emulator in HITL can receive
actual hardware responses when executing rele-
vant instructions, as they are forwarded to the real
IoT hardware via the debug port. However, hard-
ware dependence inevitably reduces scalability
and parallelism.

Full System Emulation: We can alternatively
fully emulate the kernel, filesystem, and common
peripherals using QEMU system mode, as depict-
ed in Fig. 1a. The advantages of independence and
high fidelity come with the cost of laborious and
error-prone manual confi gurations, given the hetero-
geneous architectures and peripherals in IoT devic-
es. Addressing the demand from a vast and rapidly
increasing number of IoT devices, researchers have
been focusing on automated emulation solutions.

dt frAmeWork In IntellIgent Iot edr
Figure 2 depicts the proposed intelligent IoT EDR
as a DT framework, aimed at monitoring, iden-
tifying, and thwarting malicious behavior at the
system level. The DT is structured into data and
model components. In Fig. 2a, the data compo-
nent primarily comprises emulated IoT devices
facilitated by rehosting technology, a topic thor-
oughly discussed later. To comprehend the behav-
ior of these emulated devices, we’ve integrated a
system-level monitoring module, detailed later.
Network traffi c bound for the actual IoT device is
mirrored to the virtual DT’s data component for
thorough system and network level scrutiny. The
data extracted from this analysis is then fed into
the model component for behavioral analysis.

In Fig. 2b, the malicious behavior detector
focuses on scrutinizing system calls for abnormal
commands and labeling irregular log files. Addi-
tionally, the command extractor depicted in Fig.
2c identifi es commands within the abnormal logs,
translates them into IDS rules, and deploys these
rules to the EDR. Subsequent traffic exhibiting
similar attack patterns will be promptly identifi ed
and blocked based on these established rules.

rehosted fIrmWAre In dt
An emulated fi rmware is considered a DT of the
actual IoT endpoint device since it operates exact-
ly the same as the actual device. With sufficient
computing power, we opt for full system emula-
tion due to its high fi delity. To build the virtualized
DT, we fi rst extract the fi rmware of the actual IoT
device and then rehost it using a well-known emu-
lation tool, Firmadyne [15]. The fi rmware datasets
we used are the same as those in the Firmadyne
dataset package. We extracted the fi rmware using
Binwalk, which involved unpacking compressed
archives, extracting file systems, and isolating
embedded files. This process allows for smooth
acquisition of the fi lesystem and necessary mod-
ifications. Once we confirm the firmware archi-
tecture, we replace the original kernel to support
essential system tools. Subsequently, the system
is simulated using QEMU system-level emulation
with appropriate configurations. Finally, the net-
work interface undergoes intensive confi guration,
resulting in the successful establishment of the DT.

Ensuring compatibility is crucial when integrating
system-level monitoring modules into emulated fi rm-
ware. This involves testing and adjusting the kernel
accordingly. Additionally, the diverse range of IoT

FIGURE 1. Firmware Emulation Techniques.

3

Fig. 1. Firmware Emulation Techniques

C. Digital Twin
Originated from intelligent manufacturing, a virtual twin

that digitally projects a physical entity receives data from the
physical counterpart and replicates its behavior [6]. With the
aid of output from the virtual representation, real-time moni-
toring and controlling, fault diagnostics and early prediction,
or dynamic optimization of the asset are enabled.

DT has become increasingly prevalent in the realm of IoT,
serving as virtualized counterparts to sensors, actuators [11],
and other IoT devices. They find application across various
domains including healthcare [12], where they simulate digital
patients, as well as in intelligent vehicles and IoT device man-
agement [13]. For instance, through the execution of represen-
tative functionalities and close integration with physical sen-
sors, software replicas can closely mimic real-world behavior.
Consequently, DTs serve as specialized logical entities tailored
to specific IoT applications [11]. Leveraging in-body, on-body,
and environmental sensors along with affordable devices, it
becomes feasible to create digital representations of patients
linked to targeted individuals. By harnessing data collected
from these sensors, it becomes possible to discern the activities
experienced by the individual, thereby facilitating improved
care outside traditional healthcare settings and enabling the
practice of “precision medicine” [12].

In order to handle the enormous amount of data measured
from the physical object, various kinds of ML algorithms are
proposed in the virtual twin [14]. In particular, a predictive
model is responsible for predicting information using ML
algorithms or neural networks so that further decisions are
made and trade-offs are analyzed [6].

D. Firmware Rehosting for IoT Cybersecurity
By isolating execution from co-located physical hardware,

emulation is now becoming a popular tool for software de-
velopment, security analysis, and logic debugging [5]. The
firmware of the targeted IoT endpoint device is extracted and
rehosted within an emulation environment using three main
approaches below.

1) User Program Emulation: As shown in Fig. 1 (b), the
single binary of a particular service is executed as a process us-
ing QEMU user mode without emulating the entire firmware,
kernel, and peripherals. A CPU emulator with a virtual stack
and memory segment interprets and executes each instruction
decoded from the binary. While process-level emulation proves
efficient and apt for intricate security tests on a single binary
like fuzzing, it does have drawbacks. Operations related to
peripherals can lead to unexpected failures.

2) Hardware in The Loop (HITL): As illustrated in Fig. 1
(c), the CPU emulator in HITL can receive actual hardware
responses when executing relevant instructions, as they are
forwarded to the real IoT hardware via the debug port.
However, hardware dependence inevitably reduces scalability
and parallelism.

3) Full System Emulation: We can alternatively fully em-
ulate the kernel, filesystem, and common peripherals using
QEMU system mode, as depicted in Fig. 1 (a). The advantages
of independence and high fidelity come with the cost of
laborious and error-prone manual configurations, given the
heterogeneous architectures and peripherals in IoT devices.
Addressing the demand from a vast and rapidly increasing
number of IoT devices, researchers have been focusing on
automated emulation solutions.

III. DT FRAMEWORK IN INTELLIGENT IOT EDR

Figure 2 depicts the proposed intelligent IoT EDR as a DT
framework, aimed at monitoring, identifying, and thwarting
malicious behavior at the system level. The DT is structured
into data and model components. In Figure 2 (a), the data
component primarily comprises emulated IoT devices facili-
tated by rehosting technology, a topic thoroughly discussed in
Section III-A. To comprehend the behavior of these emulated
devices, we’ve integrated a system-level monitoring module,
detailed in Section III-B. Network traffic bound for the actual
IoT device is mirrored to the virtual DT’s data component for
thorough system and network level scrutiny. The data extracted

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • November 2024 23

devices complicates automated firmware emulation.
It’s essential to thoroughly examine the various ver-
sions of libraries utilized in the system. Sometimes
we need to compile the relevant tools with a suit-
able cross-compiler to ensure compatibility.

We present the first firmware emulation
research within the context of DT, as compared to
other studies. To assess fidelity in firmware rehost-
ing, the study [5] examines various methods and
their respective levels of fidelity. While our emula-
tion achieves only module-level fidelity, we enhance
the automation of our system, thereby improving
scalability for further analysis. For instance, rather
than prioritizing fidelity improvements, we might
slightly modify the booting and kernel-related con-
figuration to match the virtual environment. This is
advantageous because some analysis tools can only
run on specific versions of the kernel.

system-level monItorIng
In contrast to network-based IDS solutions, which
can only monitor network traffic, the proposed DT
framework incorporates a system-level monitoring
module. This enables the comprehensive capture
of system-level behaviors outlined in Steps 1 and
3 in and earlier section. We specifically use the
following three approaches for system-level moni-
toring: Strace, Mshell, and SystemTap. Strace and
Mshell operate in user-space, while SystemTap
operates in kernel-space. Detailed explanations
are provided below.

Strace: As depicted in Fig. 3a, this is a typical
debugging tool utilized for tracking system calls
in progress. It operates at the user level and is
implemented through the underlying ptrace
probe. This tool allows us to observe the behav-
ior of a specific process by hooking into the IoT
device. All system calls performed by the process
are recorded for subsequent analysis.

Middle Shell (Mshell): The shell serves as a
user interface for interacting with the underlying
system, enabling users to execute commands.
Our modification involves transforming the
default shell into an Mshell, capable of logging all
commands intended for execution by a process.
These logged commands are subsequently for-
warded to the original shell for execution. Nota-
bly, unlike system calls, only executed commands
are recorded in this solution.

SystemTap: Since the Strace and Mshell solu-
tions are tailored for specific processes, a com-
prehensive system-level monitoring approach is
necessary when the targeted process is unknown.
As shown in Fig. 3c, SystemTap is integrated into
the hosted OS to analyze the behavior of all run-
ning processes, including the kernel, by recording
system calls. This solution is notably less conspicu-
ous to user processes and is better suited for exam-
ining modern malware or fileless attacks equipped
with sophisticated anti-detection technology.

IntellIgent Iot endpoInt detectIon
And response (edr)

With the advantages of high fidelity and scalability,
the system-level monitors integrated with the emu-
lated IoT system can capture the runtime behavior
of IoT endpoint devices behind the edge, thereby
opening the door to enable the detection of mali-
cious behavior. The presence of re-hosted firm-

ware in emulated IoT devices also offers a new
potential avenue to implement proactive protec-
tion for IoT endpoint devices behind the edge.

netWork ArchItecture And procedures
Figure 4 describes the network architecture of the
proposed intelligent IoT EDR. Different from the
abstract DT framework depicted in Fig. 2, this fig-
ure concentrates more on the operation proce-
dures and real traffic flow of the EDR . In particular,
how the system-level malicious behavior of DT is
detected and the corresponding attack is mitigated.
Step 0. Using the full system emulation tech-

niques mentioned earlier, the images of emu-
lated firmware are constructed and stored
offline. Once an IoT endpoint device attaches
to the EDR platform, its format is analyzed.
The corresponding DT is efficiently launched
by loading the images into the EDR.

Steps 1. and 2. The inbound traffic to the pro-
tected IoT devices mirrors the actual device
and the DT. Since the DT is emulated from
real firmware, it can be used for responding
to the inbound traffic. However, in some cases
DT may not send an appropriate response
about peripheral devices, actual device assists
DT to respond. The integrated system-level
monitors intercept all the commands and
system calls executed in the DT. In this case,
even without malicious binary, the fileless
attack can be identified. EDR could leverage
the ML algorithm to determine if the down-
loaded binary or runtime behavior is malicious
or not. The details of such endpoint detection
will be described next.

Step 3. When malicious actions are detected,
the EDR leverages the payload extractor
mentioned in Fig. 2c to identify packets
containing the malicious payload. Addition-
ally, both the actual device and the DT are
rebooted to synchronize their states. Subse-

FIGURE 2. Framework for DTs.

4

Fig. 2. Framework for DTs

from this analysis is then fed into the model component for
behavioral analysis.

In Figure 2 (b), the malicious behavior detector focuses
on scrutinizing system calls for abnormal commands and
labeling irregular log files. Additionally, the command extrac-
tor depicted in Figure 2 (c) identifies commands within the
abnormal logs, translates them into IDS rules, and deploys
these rules to the EDR. Subsequent traffic exhibiting similar
attack patterns will be promptly identified and blocked based
on these established rules.

A. Rehosted Firmware in DT

An emulated firmware is considered a DT of the actual
IoT endpoint device since it operates exactly the same as the
actual device. With sufficient computing power, we opt for
full system emulation due to its high fidelity. To build the
virtualized DT, we first extract the firmware of the actual
IoT device and then rehost it using a well-known emula-
tion tool, Firmadyne [15]. The firmware datasets we used
are the same as those in the Firmadyne dataset package.
We extracted the firmware using Binwalk, which involved
unpacking compressed archives, extracting file systems, and
isolating embedded files. This process allows for smooth
acquisition of the filesystem and necessary modifications.
Once we confirm the firmware architecture, we replace the
original kernel to support essential system tools. Subsequently,
the system is simulated using QEMU system-level emulation
with appropriate configurations. Finally, the network interface
undergoes intensive configuration, resulting in the successful
establishment of the DT.

Ensuring compatibility is crucial when integrating system-
level monitoring modules into emulated firmware. This in-
volves testing and adjusting the kernel accordingly. Addition-
ally, the diverse range of IoT devices complicates automated
firmware emulation. It’s essential to thoroughly examine the
various versions of libraries utilized in the system. Sometimes
we need to compile the relevant tools with a suitable cross-
compiler to ensure compatibility.

Fig. 3. System-level Monitoring

We present the first firmware emulation research within
the context of DT, as compared to other studies. To assess
fidelity in firmware rehosting, the study [5] examines various
methods and their respective levels of fidelity. While our
emulation achieves only module-level fidelity, we enhance the
automation of our system, thereby improving scalability for
further analysis. For instance, rather than prioritizing fidelity
improvements, we might slightly modify the booting and
kernel-related configuration to match the virtual environment.
This is advantageous because some analysis tools can only run
on specific versions of the kernel.

B. System-level Monitoring

In contrast to network-based IDS solutions, which can only
monitor network traffic, the proposed DT framework incor-
porates a system-level monitoring module. This enables the
comprehensive capture of system-level behaviors outlined in
Steps 1 and 3 in Section II-A. We specifically use the following
three approaches for system-level monitoring: Strace, Mshell,
and SystemTap. Strace and Mshell operate in user-space, while
SystemTap operates in kernel-space. Detailed explanations are
provided below.

1) Strace: As depicted in Fig. 3 (a), this is a typical
debugging tool utilized for tracking system calls in progress.
It operates at the user level and is implemented through the
underlying ptrace probe. This tool allows us to observe the
behavior of a specific process by hooking into the IoT device.
All system calls performed by the process are recorded for
subsequent analysis.

2) Middle shell (Mshell): The shell serves as a user in-
terface for interacting with the underlying system, enabling
users to execute commands. Our modification involves trans-
forming the default shell into an Mshell, capable of logging
all commands intended for execution by a process. These
logged commands are subsequently forwarded to the original
shell for execution. Notably, unlike system calls, only executed
commands are recorded in this solution.

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • November 202424

quently, a YARA rule corresponding to the
identified packets is constructed and relayed
to the IDS within the EDR, where we look for
networking-related command text strings.

Step 4. The IDS inside EDR will update the
rule database according to the information
received from the DT.

Step 5. The malicious traffic directed to the actu-
al IoT endpoint device is immediately blocked.
As a result, endpoint detection and protection
are enabled via emulated DT’s aid.

endpoInt detectIon
Our endpoint detection acquires system-level
behavior with the assistance of the emulated DT.
The system-level data is then converted into a par-
ticular format to serve as input for the proposed
detector. This detector consists of three phases:

1. Raw data collection
2. Feature extraction and pre-processing
3. Verification and analysis
We implement an ML-based detector that reasons
about the semantics of system-level log sequenc-
es for identifying malicious behavior.

Raw Data Collection: The system-level mon-
itor collects the system call sequence as the raw
data. The data is labeled according to the type of
target process and binary, e.g., malware or benign
ware. Following is an example of raw data.

734 1629037867.467243 open(“/dev/FTWDT101
watchdog”, O_RDWR unfinished …
729 1629037867.346495 write(1, “Yowai: Raping
you sorry 0”, 24) = 24 0.001728
732 1629037867.664298 read(0, unfinished ...
728 1629485115.479671 close(3) = 0 0.000215
728 1629485115.510892 ioctl(0, TCGETS, 0x7ec-
3da5c) = -1 ENOTTY (Inappropriate ioctl for
device) 0.000199

Feature Extraction and PrePprocessing: The
system-level monitor collects the system call
sequence as the raw data, consisting of system
call name, system call parameters, and return
value. We simply extract the name of the system
call as features for the following processing. The
parameters of the system calls are not considered
to prevent confusion to the machine learning
model. Then we concatenate names of system
calls into a chronological sequence. The previous
example after feature extraction becomes

open write read close ioctl

Verification and Analysis: We apply TF-IDF to
convert system call sequences into vectors. If the
entire dataset contains 167 different system call
names, the vector dimension is (1,167). For exam-
ple, if the dataset only contains the following two
system call name sequences:

1: read read write write open close ioctl
2: open read write open read write

By using TFIDF, the dataset is converted as

close ioctl open read write
1: 0.390548~0.390548~0.277878~0.555756~0.555756
2: 0.000000~0.000000~0.577350~0.577350~0.577350

The pre-processed features are then inputted
into the ML model for detection, where Support
Vector Machine (SVM) and Random Forest (RF)
algorithms are applied.

After analyzing the system-level behavior, the
packets containing malicious behavior will be
captured. To enhance accuracy, we built another
ML-based detector that considers the relationship
of network traffic for identifying malicious behav-
ior. As shown in Table 1, most IoT endpoint devic-
es test the connection status by constructing DNS
queries to a few domains, such as google.com.
The cumulative count of DNS queries is beneficial.
Additionally, since IoT endpoint devices do not
actively establish connections to other devices, the
number of unique IP addresses plays an important
role in the features. For model selection, we chose
the Support Vector Machine (SVM) and Random

FIGURE 4. Network architecture of intelligent IoT EDR using full system firmware
re-hosting.

5

Fig. 4. Network Architecture of Intelligent IoT EDR Using Full System
Firmware Re-hosting

3) SystemTap: Since the Strace and Mshell solutions are
tailored for specific processes, a comprehensive system-level
monitoring approach is necessary when the targeted process is
unknown. As shown in Fig. 3 (c), SystemTap is integrated into
the hosted OS to analyze the behavior of all running processes,
including the kernel, by recording system calls. This solution is
notably less conspicuous to user processes and is better suited
for examining modern malware or fileless attacks equipped
with sophisticated anti-detection technology.

IV. INTELLIGENT IOT ENDPOINT DETECTION AND
RESPONSE (EDR)

With the advantages of high fidelity and scalability, the
system-level monitors integrated with the emulated IoT system
can capture the runtime behavior of IoT endpoint devices
behind the edge, thereby opening the door to enable the
detection of malicious behavior. The presence of re-hosted
firmware in emulated IoT devices also offers a new potential
avenue to implement proactive protection for IoT endpoint
devices behind the edge.

A. Network Architecture and Procedures

Fig. 4 describes the network architecture of the proposed
intelligent IoT EDR. Different from the abstract DT framework
depicted in Fig. 2, this figure concentrates more on the
operation procedures and real traffic flow of the EDR . In
particular, how the system-level malicious behavior of DT is
detected and the corresponding attack is mitigated.
Step 0. Using the full system emulation techniques mentioned

in Sec. III-A, the images of emulated firmware are con-
structed and stored offline. Once an IoT endpoint device
attaches to the EDR platform, its format is analyzed. The
corresponding DT is efficiently launched by loading the
images into the EDR.

Steps 1. and 2. The inbound traffic to the protected IoT
devices mirrors the actual device and the DT. Since
the DT is emulated from real firmware, it can be used
for responding to the inbound traffic. However, in some
cases DT may not send an appropriate response about
peripheral devices, actual device assists DT to respond.
The integrated system-level monitors intercept all the
commands and system calls executed in the DT. In this
case, even without malicious binary, the fileless attack can
be identified. EDR could leverage the ML algorithm to
determine if the downloaded binary or runtime behavior
is malicious or not. The details of such endpoint detection
will be described in Section IV-B.

Step 3. When malicious actions are detected, the EDR lever-
ages the payload extractor mentioned in Fig. 2 (c) to
identify packets containing the malicious payload. Addi-
tionally, both the actual device and the DT are rebooted
to synchronize their states. Subsequently, a YARA rule
corresponding to the identified packets is constructed and
relayed to the IDS within the EDR, where we look for
networking-related command text strings.

Step 4. The IDS inside EDR will update the rule database
according to the information received from the DT.

Step 5. The malicious traffic directed to the actual IoT end-
point device is immediately blocked. As a result, endpoint
detection and protection are enabled via emulated DT’s
aid.

B. Endpoint Detection

Our endpoint detection acquires system-level behavior with
the assistance of the emulated DT. The system-level data is
then converted into a particular format to serve as input for the
proposed detector. This detector consists of three phases: (a)
raw data collection, (b) feature extraction and pre-processing,
and (c) verification and analysis. We implement an ML-based
detector that reasons about the semantics of system-level log
sequences for identifying malicious behavior.

1) Raw Data Collection: The system-level monitor
collects the system call sequence as the raw data. The data is
labeled according to the type of target process and binary, e.g.,
malware or benign ware. Following is an example of raw data.

734 1629037867.467243 open("/dev/FTWDT101
watchdog", O_RDWR unfinished ...
729 1629037867.346495 write(1, "Yowai:
Raping you sorry 0", 24) = 24 0.001728
732 1629037867.664298 read(0, unfinished
...
728 1629485115.479671 close(3) = 0
0.000215
728 1629485115.510892 ioctl(0, TCGETS,
0x7ec3da5c) = -1 ENOTTY (Inappropriate
ioctl for device) 0.000199

2) Feature Extraction and Pre-processing: The system-
level monitor collects the system call sequence as the raw
data, consisting of system call name, system call parameters,

FIGURE 3. System-level monitoring.

4

Fig. 2. Framework for DTs

from this analysis is then fed into the model component for
behavioral analysis.

In Figure 2 (b), the malicious behavior detector focuses
on scrutinizing system calls for abnormal commands and
labeling irregular log files. Additionally, the command extrac-
tor depicted in Figure 2 (c) identifies commands within the
abnormal logs, translates them into IDS rules, and deploys
these rules to the EDR. Subsequent traffic exhibiting similar
attack patterns will be promptly identified and blocked based
on these established rules.

A. Rehosted Firmware in DT

An emulated firmware is considered a DT of the actual
IoT endpoint device since it operates exactly the same as the
actual device. With sufficient computing power, we opt for
full system emulation due to its high fidelity. To build the
virtualized DT, we first extract the firmware of the actual
IoT device and then rehost it using a well-known emula-
tion tool, Firmadyne [15]. The firmware datasets we used
are the same as those in the Firmadyne dataset package.
We extracted the firmware using Binwalk, which involved
unpacking compressed archives, extracting file systems, and
isolating embedded files. This process allows for smooth
acquisition of the filesystem and necessary modifications.
Once we confirm the firmware architecture, we replace the
original kernel to support essential system tools. Subsequently,
the system is simulated using QEMU system-level emulation
with appropriate configurations. Finally, the network interface
undergoes intensive configuration, resulting in the successful
establishment of the DT.

Ensuring compatibility is crucial when integrating system-
level monitoring modules into emulated firmware. This in-
volves testing and adjusting the kernel accordingly. Addition-
ally, the diverse range of IoT devices complicates automated
firmware emulation. It’s essential to thoroughly examine the
various versions of libraries utilized in the system. Sometimes
we need to compile the relevant tools with a suitable cross-
compiler to ensure compatibility.

Fig. 3. System-level Monitoring

We present the first firmware emulation research within
the context of DT, as compared to other studies. To assess
fidelity in firmware rehosting, the study [5] examines various
methods and their respective levels of fidelity. While our
emulation achieves only module-level fidelity, we enhance the
automation of our system, thereby improving scalability for
further analysis. For instance, rather than prioritizing fidelity
improvements, we might slightly modify the booting and
kernel-related configuration to match the virtual environment.
This is advantageous because some analysis tools can only run
on specific versions of the kernel.

B. System-level Monitoring

In contrast to network-based IDS solutions, which can only
monitor network traffic, the proposed DT framework incor-
porates a system-level monitoring module. This enables the
comprehensive capture of system-level behaviors outlined in
Steps 1 and 3 in Section II-A. We specifically use the following
three approaches for system-level monitoring: Strace, Mshell,
and SystemTap. Strace and Mshell operate in user-space, while
SystemTap operates in kernel-space. Detailed explanations are
provided below.

1) Strace: As depicted in Fig. 3 (a), this is a typical
debugging tool utilized for tracking system calls in progress.
It operates at the user level and is implemented through the
underlying ptrace probe. This tool allows us to observe the
behavior of a specific process by hooking into the IoT device.
All system calls performed by the process are recorded for
subsequent analysis.

2) Middle shell (Mshell): The shell serves as a user in-
terface for interacting with the underlying system, enabling
users to execute commands. Our modification involves trans-
forming the default shell into an Mshell, capable of logging
all commands intended for execution by a process. These
logged commands are subsequently forwarded to the original
shell for execution. Notably, unlike system calls, only executed
commands are recorded in this solution.

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • November 2024 25

Forest (RF) algorithms to train our dataset.

vAlIdAtIon And performAnce evAluAtIon

experImentAl setup
The intelligent EDR in the experimental environ-
ment is implemented using an Intel NUC with an
Intel Core i3-8109U processor, 32GB RAM, and a
256GB SSD. Ubuntu 18.04 is chosen as the oper-
ating system, and Security Onion is selected as the
IDS engine with data visualization tools. To avoid
direct modification of incoming network packets,
Security Onion uses a mirror port to replicate net-
work traffic, so external network interface cards are
needed on the NUC to achieve this function.

Regarding the actual IoT endpoint devices for
protection, commercial digital video recorders
(DVRs), IP cameras, and routers are deployed with
ARM, MIPS, and X86 architectures. Depending on
the IoT device, we obtain and extract its firmware
and activate a virtual DT for the IoT device using
firmware emulation techniques, ensuring it possess-
es the same characteristics as the actual device. At
the same time, we compile the corresponding ker-
nel module using a cross-compiler for different archi-
tectures, integrate it into the DT, and collect system
calls using the system-level monitoring module.

AttAck ImplementAtIon
Regarding malware attacks, we implemented Mirai
and its variants using multiple publicly available
proofs of concept (PoCs) and Metasploit mod-
ules.1 Additionally, we implemented four PoCs for
fileless attacks targeting endpoint devices, includ-
ing CVE-2020-10514, CVE-2019-10999, and CVE-
2020-10987. Two notorious attacks were selected:
buffer overflow and command injection. A buffer
overflow occurs when large data is sent, exceeding
the buffer size, which can cause system malfunc-
tions or allow attackers to take control. Command
Injection is a common type of web injection attack
where administrators fail to filter sensitive charac-
ters in a website’s input form, enabling attackers to
send payloads to execute arbitrary commands.

dAtAset
By applying the developed malware and fileless
attacks mentioned in the previous subsection with-
in our experimental environment, we generated
trace results through fuzzing, some of which can
be labeled as malware. To avoid a high false alarm
rate, we first collect and analyze historical data to
understand what typical behavior looks like for
commands and log entries. Here are two examples:
1. `dd if=/dev/zero of=/dev/sda
bs=512 count=1`: This command has the
potential to cause disk wipe or data corruption.
We need to check if this command is executed
during routine maintenance or if it is unexpect-
ed, which could indicate data corruption.

2. `Aug 8 23:45:12 server
sshd[1234]: Failed password
for invalid user admin from
192.168.1.100 port 22 ssh2` :
This log entry could indicate a brute force
attack or unauthorized access attempt. We
compare this against historical failed login
attempts to determine if it is part of a larger
brute force attack. Moreover, system bina-
ries such as init, /sbin/syslogd, or ~/

bin/sh were executed to generate datasets
labeled as benign. The dataset encompasses
three architectures, with the number of trac-
es for ARM, MIPS, and X86 being 457,373;
579,339; and 152,458, respectively.

evAluAtIon mAtrIces
In the evaluation phase, we adopted the common
evaluation metrics, namely, accuracy, recall, preci-
sion, false-positive rate, and F1-measure, to assess
the performance of our proposed method. These
metrics are defined based on the following inter-
mediate measures.
• True positive (TP): samples correctly classified

as positive.
• False positive (FP): samples incorrectly classi-

fied as positive.
• True negative (TN): samples correctly classi-

fied as negative.
• False negative (FN): samples incorrectly classi-

fied as positive.
Accuracy refers to the proportion of correct

judgments of true and false. Precision refers to
how much is true when the judgment is true.
Recall is the probability of the samples in the posi-
tive class being classified correctly:

7

TABLE II
PERFORMANCE COMPARISON OF RANDOM FOREST AND SVM IN

SYSTEM-LEVEL DETECTOR AND NETWORK TRAFFIC DETECTOR

System-level Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.22% 99.29% 99.05% 99.54%

SVM 94.72% 96.78% 96.01% 97.55%

Network Traffic Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.94% 99.8% 99.95% 99.95%

SVM 99.35% 98.47% 99.43% 99.43%

and F1-measure, to assess the performance of our proposed
method. These metrics are defined based on the following
intermediate measures.

• True positive (TP): samples correctly classified as posi-
tive.

• False positive (FP): samples incorrectly classified as
positive.

• True negative (TN): samples correctly classified as neg-
ative.

• False negative (FN): samples incorrectly classified as
positive.

Accuracy refers to the proportion of correct judgments of true
and false. Precision refers to how much is true when the
judgment is true. Recall is the probability of the samples in
the positive class being classified correctly:

Recall =
TP

TP + FN
. (1)

F1-measure is the weighted average of precision and recall:

F1 measure =
2 ∗ (Recall ∗ Precision)

Recall + Precision
. (2)

E. Experimental Results

The experiment was conducted on a dataset comprising all
samples from our dataset. We utilized 10-fold cross-validation
to validate our experimental results, ensuring the robustness of
the experiment. The dataset was split into a training dataset,
containing seventy percent of the overall dataset, and a testing
dataset, containing thirty percent of the overall dataset. The
results were averaged over ten independent runs, with the
training and test sets determined by 10-fold cross-validation.
Table II presents the experimental results of the two models.
It is evident that Random Forest outperforms the other model,
especially in terms of recall (i.e., 100%). Specifically, in the
system-level detector, Random Forest achieved an accuracy
of 99.22%, an F1-score of 99.29%, precision of 99.05%, and
recall of 99.54%, outperforming SVM, which achieved lower
accuracy and precision. Similarly, in the network traffic detec-
tor, Random Forest maintained a high level of performance,
with nearly perfect accuracy (99.94%), F1-score (99.8%), pre-
cision (99.95%), and recall (99.95%). These results highlight

the superior robustness and reliability of Random Forest in
both detection scenarios, making it a more effective choice
for IoT EDR systems. In particular, Random Forest’s ability
to maintain a strong balance between precision and recall
suggests that it is highly capable of minimizing false positives
and negatives, which is critical in maintaining security without
overwhelming administrators with false alerts.

In the experiment, we exploit a command injection vulnera-
bility in a commercial DVR device and then launch the telnet
service. After observing the system call write interacting
with the web service via a system-level monitor, we identify
the packets containing the malicious payload and convert the
payload into an IDS rule. For example, due to the command
injection vulnerability in the DVR web service, the IDS rule
is:
alert tcp any any -> any any (msg:

"Command injection"; content: "GET
/goform/setUsbUnload/.js?deviceName=A;.*";
pcre:"/[a-zA-Z0-9]2/"; sid:101;)

VI. CONCLUSION

In order to enable a feasible detection and response solu-
tion for resource-constrained IoT endpoint devices, this paper
leverages a powerful edge to establish a DT of the actual IoT
endpoint devices through firmware emulation. Integrating a
system-level monitoring module with a software-defined DT
could investigate the precise operational behavior of an IoT
device, thereby resolving the drawbacks of typical network-
based IDS solutions where only packets can be observed.
We propose an ML-based detector in EDR where system
calls are leveraged to reason the operational semantics, allow-
ing harmful behavior to be detected. With the aid of IDS,
malicious traffic to the actual IoT device can be blocked,
thereby achieving endpoint response. Experimental results
demonstrate that the EDR successfully captures malware and
fileless attacks targeting commercial IoT endpoints deployed
behind the edge with high accuracy, reaching 99.94%. As
the first IoT DT facilitating the detection and protection of
IoT endpoint devices, this paper demonstrates the potential of
firmware emulation in securing the IoT paradigm. Inspired by
this paper, many DT applications using firmware emulation
are expected to be proposed for the security enhancement of
IoT endpoint devices.

VII. ACKNOWLEDGMENTS

This work was partly supported by the National Science and
Technology Council (NSTC), Taiwan, under Grant 113-2634-
F-011-002-MBK.

REFERENCES

[1] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding fileless attacks on Linux-based IoT devices with
HoneyCloud,” in Proc. ACM MobiSys 2019, Jun. 2019, p. 482–493.

[2] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban IDS:
An intelligent anomaly based intrusion detection system for IoT edge
devices,” IEEE Internet Things J., vol. 7, no. 8, pp. 6882–6897, Aug.
2020.

 (1)

F1-measure is the weighted average of precision
and recall:

7

TABLE II
PERFORMANCE COMPARISON OF RANDOM FOREST AND SVM IN

SYSTEM-LEVEL DETECTOR AND NETWORK TRAFFIC DETECTOR

System-level Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.22% 99.29% 99.05% 99.54%

SVM 94.72% 96.78% 96.01% 97.55%

Network Traffic Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.94% 99.8% 99.95% 99.95%

SVM 99.35% 98.47% 99.43% 99.43%

and F1-measure, to assess the performance of our proposed
method. These metrics are defined based on the following
intermediate measures.

• True positive (TP): samples correctly classified as posi-
tive.

• False positive (FP): samples incorrectly classified as
positive.

• True negative (TN): samples correctly classified as neg-
ative.

• False negative (FN): samples incorrectly classified as
positive.

Accuracy refers to the proportion of correct judgments of true
and false. Precision refers to how much is true when the
judgment is true. Recall is the probability of the samples in
the positive class being classified correctly:

Recall =
TP

TP + FN
. (1)

F1-measure is the weighted average of precision and recall:

F1 measure =
2 ∗ (Recall ∗ Precision)

Recall + Precision
. (2)

E. Experimental Results

The experiment was conducted on a dataset comprising all
samples from our dataset. We utilized 10-fold cross-validation
to validate our experimental results, ensuring the robustness of
the experiment. The dataset was split into a training dataset,
containing seventy percent of the overall dataset, and a testing
dataset, containing thirty percent of the overall dataset. The
results were averaged over ten independent runs, with the
training and test sets determined by 10-fold cross-validation.
Table II presents the experimental results of the two models.
It is evident that Random Forest outperforms the other model,
especially in terms of recall (i.e., 100%). Specifically, in the
system-level detector, Random Forest achieved an accuracy
of 99.22%, an F1-score of 99.29%, precision of 99.05%, and
recall of 99.54%, outperforming SVM, which achieved lower
accuracy and precision. Similarly, in the network traffic detec-
tor, Random Forest maintained a high level of performance,
with nearly perfect accuracy (99.94%), F1-score (99.8%), pre-
cision (99.95%), and recall (99.95%). These results highlight

the superior robustness and reliability of Random Forest in
both detection scenarios, making it a more effective choice
for IoT EDR systems. In particular, Random Forest’s ability
to maintain a strong balance between precision and recall
suggests that it is highly capable of minimizing false positives
and negatives, which is critical in maintaining security without
overwhelming administrators with false alerts.

In the experiment, we exploit a command injection vulnera-
bility in a commercial DVR device and then launch the telnet
service. After observing the system call write interacting
with the web service via a system-level monitor, we identify
the packets containing the malicious payload and convert the
payload into an IDS rule. For example, due to the command
injection vulnerability in the DVR web service, the IDS rule
is:
alert tcp any any -> any any (msg:

"Command injection"; content: "GET
/goform/setUsbUnload/.js?deviceName=A;.*";
pcre:"/[a-zA-Z0-9]2/"; sid:101;)

VI. CONCLUSION

In order to enable a feasible detection and response solu-
tion for resource-constrained IoT endpoint devices, this paper
leverages a powerful edge to establish a DT of the actual IoT
endpoint devices through firmware emulation. Integrating a
system-level monitoring module with a software-defined DT
could investigate the precise operational behavior of an IoT
device, thereby resolving the drawbacks of typical network-
based IDS solutions where only packets can be observed.
We propose an ML-based detector in EDR where system
calls are leveraged to reason the operational semantics, allow-
ing harmful behavior to be detected. With the aid of IDS,
malicious traffic to the actual IoT device can be blocked,
thereby achieving endpoint response. Experimental results
demonstrate that the EDR successfully captures malware and
fileless attacks targeting commercial IoT endpoints deployed
behind the edge with high accuracy, reaching 99.94%. As
the first IoT DT facilitating the detection and protection of
IoT endpoint devices, this paper demonstrates the potential of
firmware emulation in securing the IoT paradigm. Inspired by
this paper, many DT applications using firmware emulation
are expected to be proposed for the security enhancement of
IoT endpoint devices.

VII. ACKNOWLEDGMENTS

This work was partly supported by the National Science and
Technology Council (NSTC), Taiwan, under Grant 113-2634-
F-011-002-MBK.

REFERENCES

[1] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding fileless attacks on Linux-based IoT devices with
HoneyCloud,” in Proc. ACM MobiSys 2019, Jun. 2019, p. 482–493.

[2] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban IDS:
An intelligent anomaly based intrusion detection system for IoT edge
devices,” IEEE Internet Things J., vol. 7, no. 8, pp. 6882–6897, Aug.
2020.

 (2)

experImentAl results
The experiment was conducted on a dataset com-
prising all samples from our dataset. We utilized
10-fold cross-validation to validate our experimental
results, ensuring the robustness of the experiment.
The dataset was split into a training dataset, con-
taining seventy percent of the overall dataset, and
a testing dataset, containing thirty percent of the
overall dataset. The results were averaged over ten
independent runs, with the training and test sets
determined by 10-fold cross-validation. Table 2 pres-
ents the experimental results of the two models. It is
evident that Random Forest outperforms the other
model, especially in terms of recall (i.e., 100%). Spe-
cifically, in the system-level detector, Random For-
est achieved an accuracy of 99.22%, an F1-score
of 99.29%, precision of 99.05%, and recall of
99.54%, outperforming SVM, which achieved lower
accuracy and precision. Similarly, in the network
traffic detector, Random Forest maintained a high
level of performance, with nearly perfect accuracy

TABLE 1. Extract feature from network traffic.

Type Feature

Data Size TCP Upload Bytes, TCP Download Bytes, UCP Upload Bytes, UCP
Download Bytes

Packet Count TCP Upload Packets, TCP Download Packets, UCP Upload Pack-
ets, UCP Download Packets

Counter Total Number of DNS Domain Name, Total Number of Unique IP

Other Direction of Connection

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • November 202426

(99.94%), F1-score (99.8%), precision (99.95%),
and recall (99.95%). These results highlight the
superior robustness and reliability of Random For-
est in both detection scenarios, making it a more
effective choice for IoT EDR systems. In particular,
Random Forest’s ability to maintain a strong balance
between precision and recall suggests that it is high-
ly capable of minimizing false positives and nega-
tives, which is critical in maintaining security without
overwhelming administrators with false alerts.

In the experiment, we exploit a command
injection vulnerability in a commercial DVR
device and then launch the telnet service. After
observing the system call \texttt{write} interacting
with the web service via a system-level monitor,
we identify the packets containing the malicious
payload and convert the payload into an IDS rule.
For example, due to the command injection vul-
nerability in the DVR web service, the IDS rule is:

alert tcp any any -> any any (msg: “Command
injection”; content: “GET /goform/setUsbUn-
load/.js?deviceName=A;.*”; pcre:”/[a-zA-Z0-9]
{2}/”; sid:101;)

conclusIon
In order to enable a feasible detection and
response solution for resource-constrained IoT
endpoint devices, this article leverages a powerful
edge to establish a DT of the actual IoT endpoint
devices through firmware emulation. Integrating a
system-level monitoring module with a software-de-
fined DT could investigate the precise operational
behavior of an IoT device, thereby resolving the
drawbacks of typical network-based IDS solutions
where only packets can be observed. We propose
an ML-based detector in EDR where system calls
are leveraged to reason the operational semantics,
allowing harmful behavior to be detected. With
the aid of IDS, malicious traffic to the actual IoT
device can be blocked, thereby achieving endpoint
response. Experimental results demonstrate that
the EDR successfully captures malware and file-
less attacks targeting commercial IoT endpoints
deployed behind the edge with high accuracy,
reaching 99.94%. As the first IoT DT facilitating the
detection and protection of IoT endpoint devices,
this article demonstrates the potential of firmware
emulation in securing the IoT paradigm. Inspired
by this article, many DT applications using firm-
ware emulation are expected to be proposed for
the security enhancement of IoT endpoint devices.

AcknoWledgments

This work was partly supported by the National
Science and Technology Council (NSTC), Taiwan,
under Grant 113-2634-F-011-002-MBK.

references
[1] F. Dang et al., “Understanding Fileless Attacks on Linux-Based

IoT Devices with HoneyCloud,” Proc. ACM MobiSys 2019, June
2019, pp. 482–93.

[2] M. Eskandari et al., “Passban IDS: An Intelligent Anomaly Based
Intrusion Detection System for IoT Edge Devices,” IEEE Internet
Things J., vol. 7, no. 8, Aug. 2020, pp. 6882–97.

[3] P. M. S. Sánchez et al., “A Survey on Device Behavior Finger-
printing: Data Sources, Techniques, Application Scenarios, and
Datasets,” IEEE Commun. Surveys Tuts., vol. 23, 2nd Quarter
2021, pp. 1048–77.

[4] A. Mudgerikar, P. Sharma, and E. Bertino, “Edge-Based Intrusion
Detection for IoT Devices,” ACM Trans. Manag. Info. Systems,
vol. 11, no. 4, Oct. 2020.

[5] C. Wright et al., “Challenges in Firmware Re-Hosting, Emula-
tion, and Analysis,” ACM Computing Surveys, vol. 54, no. 1, Apr.
2021, pp. 1–36.

[6] R. Eramo et al., “Conceptualizing Digital Twins,” IEEE Softw.,
2021, accepted for publication.

[7] H. Alasmary et al., “SHELLCORE: Automating Malicious IoT Soft-
ware Detection Using Shell Commands Representation,” IEEE
Internet Things J., 2021, accepted for publication.

[8] J. Khoury, M. Safaei Pour, and E. Bou-Harb, “A Near Real-Time Scheme
for Collecting and Analyzing IoT Malware Artifacts at Scale,” Proc.
17th Int’l. Conf. Availability, Reliability and Security, 2022, pp. 1–11.

[9] J. Habibi et al., “Heimdall: Mitigating the Internet of Insecure Things,”
IEEE Internet Things J., vol. 4, no. 4, Aug. 2017, pp. 968–78.

[10] Y. Jia et al., “FlowGuard: An Intelligent Edge Defense Mecha-
nism Against IoT DDoS Attacks,” IEEE Internet Things J., vol. 7,
no. 10, Oct. 2020, p. 9552–62.

[11] R. Minerva, G. M. Lee, and N. Crespi, “Digital Twin in the IoT Con-
text: A Survey on Technical Features, Scenarios, and Architectural
Models,” Proc. IEEE, vol. 108, no. 10, Oct. 2020, pp. 1785–1824.

[12] H. Elayan, M. Aloqaily, and M. Guizani, “Digital Twin for Intel-
ligent Context-Aware IoT Healthcare Systems,” IEEE Internet
Things J., vol. 8, no. 23, Dec. 2021, pp. 16,749–57.

[13] G. Mylonas et al., “Digital Twins from Smart Manufacturing
to Smart Cities: A Survey,” IEEE Access, vol. 9, Oct. 2021, pp.
143,222–1,432,492.

[14] M. M. Rathore and S. A. Shah, “The Role of AI, Machine Learn-
ing, and Big Data in Digital Twinning: A Systematic Literature
Review, Challenges, and Opportunities,” IEEE Access, vol. 9, Feb.
2021, pp. 32,030–352.

[15] D. D. Chen et al., “Towards Automated Dynamic Analysis for Linux-
Based Embedded Firmware,” in Proc. NDSS 2016, Feb. 2016.

bIogrAphIes
Shin-Ming Cheng (smcheng@mail.ntust.edu.tw) received the B.S.
and Ph.D. degrees in computer science and information engineer-
ing from the National Taiwan University, Taipei, Taiwan, in 2000
and 2007, respectively. Since 2012, he has been on the faculty of
the Department of Computer Science and Information Engineer-
ing, National Taiwan University of Science and Technology, Taipei,
where he is currently a Professor. Since 2022, he has served as
the Deputy Director-General in Administration for Cyber Security,
Ministry of Digital Affairs. His current interests are mobile network
security, IoT system security, malware analysis and AI robustness.
He has received IEEE Trustcom 2020 Best Paper Awards.

Yi-Ching Lui (m10815109@mail.ntust.edu.tw) received Master
degree in computer science and information engineering from
National Taiwan University of Science and Tchnology, Taipei,
Taiwan, in 2022.

nien-Jen TSai (m11115009@mail.ntust.edu.tw) is an open-source
enthusiast who enjoys enhancing computational speed and
security. She has contributed to projects such as LLVM, libFuzz-
er, QEMU, and OpenSSL. Her current research focuses specifi-
cally on system and network security.

Bing-Kai hong (d10815003@mail.ntust.edu.tw) received his B.S.
degree in computer science and information engineering from the
National Taiwan University of Science and Technology, Taipei, Tai-
wan, in 2018. He is currently a Ph.D. candidate of the Department
of Computer Science and Information Engineering, National Taiwan
University of Science and Technology, Taipei. He visited EURECOM
and NICT Cybersecurity Lab in 2018 and 2019, respectively. His
research interests are secure system integration and development
using virtualization technologies in mobile networks and IoT systems.
He has received a 4-year scholarship of the Ministry of Science and
Technology, CISC 2020 and TANET 2021 best paper awards.

1 https://docs.metasploit.
com/docs/modules.html.

TABLE 2. Performance comparison of Random Forest and SVM in system-level detec-
tor and network traffic detector.

System-level Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.22% 99.29% 99.05% 99.54%

SVM 94.72% 96.78% 96.01% 97.55%

Network Traffic Detector

Classifier Accuracy F1-score Precision Recall

Random Forest 99.94% 99.8% 99.95% 99.95%

SVM 99.35% 98.47% 99.43% 99.43%

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:22:15 UTC from IEEE Xplore. Restrictions apply.

